日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
          (1)求⊙O的半徑;
          (2)點P從點B沿邊BA向點A以1cm/s的速度勻速運動,以P為圓心,PB長為半徑作圓,設(shè)點P運動的時間為t s,若⊙P與⊙O相切,求t的值.

          【答案】
          (1)解:如圖1,設(shè)⊙O與AB、BC、CA的切點分別為D、E、F,連接OD、OE、OF,

          則AD=AF,BD=BE,CE=CF.

          ∵⊙O為△ABC的內(nèi)切圓,

          ∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.

          ∵∠C=90°,

          ∴四邊形CEOF是矩形,

          ∵OE=OF,

          ∴四邊形CEOF是正方形.

          設(shè)⊙O的半徑為rcm,則FC=EC=OE=rcm,

          在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,

          ∴AB= =5cm.

          ∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,

          ∴4﹣r+3﹣r=5,

          解得 r=1,即⊙O的半徑為1cm.


          (2)解:如圖2,過點P作PG⊥BC,垂足為G.

          ∵∠PGB=∠C=90°,

          ∴PG∥AC.

          ∴△PBG∽△ABC,

          ∵BP=t,

          ∴PG= = ,BG= =

          若⊙P與⊙O相切,則可分為兩種情況,⊙P與⊙O外切,⊙P與⊙O內(nèi)切.

          ①當(dāng)⊙P與⊙O外切時,

          如圖3,連接OP,則OP=1+t,過點P作PH⊥OE,垂足為H.

          ∵∠PHE=∠HEG=∠PGE=90°,

          ∴四邊形PHEG是矩形,

          ∴HE=PG,PH=GE,

          ∴OH=OE﹣HE=1﹣ ,PH=GE=BC﹣EC﹣BG=3﹣1﹣ =2﹣

          在Rt△OPH中,

          由勾股定理, ,

          解得 t=

          ②當(dāng)⊙P與⊙O內(nèi)切時,

          如圖4,連接OP,則OP=t﹣1,過點O作OM⊥PG,垂足為M.

          ∵∠MGE=∠OEG=∠OMG=90°,

          ∴四邊形OEGM是矩形,

          ∴MG=OE,OM=EG,

          ∴PM=PG﹣MG= ,

          OM=EG=BC﹣EC﹣BG=3﹣1﹣ =2﹣ ,

          在Rt△OPM中,

          由勾股定理, ,

          解得 t=2.

          綜上所述,⊙P與⊙O相切時,t= s或t=2s.

          另解:外切時,OP2=OD2+DP2.內(nèi)切時,(t﹣1)2=12的平方加(t﹣2)2


          【解析】(1)求圓的半徑,因為相切,我們通常連接切點和圓心,設(shè)出半徑,再利用圓的性質(zhì)和直角三角形性質(zhì)表示其中關(guān)系,得到方程,求解即得半徑.(2)考慮兩圓相切,且一圓已固定,一般就有兩種情形,外切與內(nèi)切.所以我們要分別討論,當(dāng)外切時,圓心距等于兩圓半徑的和;當(dāng)內(nèi)切時,圓心距等于大圓與小圓半徑的差.分別作垂線構(gòu)造直角三角形,類似(1)通過表示邊長之間的關(guān)系列方程,易得t的值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解方程
          (1)3x2﹣6x+1=0(用配方法)
          (2)3(x﹣1)2=x(x﹣1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一個半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是(
          A.
          B.
          C.
          D.πr2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,底面積為30cm2的空圓柱形容器內(nèi)水平放置著由兩個實心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②所示.
          請根據(jù)圖中提供的信息,解答下列問題:
          (1)圓柱形容器的高為cm,勻速注水的水流速度為cm3/s;
          (2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱的高和底面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】從甲、乙、丙3名同學(xué)中隨機抽取環(huán)保志愿者,求下列事件的概率;
          (1)抽取1名,恰好是甲;
          (2)抽取2名,甲在其中.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】具備下列條件的三角形中,不是直角三角形的是(

          A. ∠A+∠B=∠C B. ∠B=∠C=∠A

          C. ∠A=90°-∠B D. ∠A-∠B=90°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點P在以AB為直徑的半圓內(nèi),連接AP、BP,并延長分別交半圓于點C、D,連接AD、BC并延長交于點F,作直線PF,下列說法一定正確的是( ) ①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.

          A.①③
          B.①④
          C.②④
          D.③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)興趣小組對線段上的動點問題進行探究,已知AB=8.
          問題思考:
          如圖1,點P為線段AB上的一個動點,分別以AP、BP為邊在同側(cè)作正方形APDC、BPEF.

          (1)當(dāng)點P運動時,這兩個正方形的面積之和是定值嗎?若是,請求出;若不是,請求出這兩個正方形面積之和的最小值.
          (2)分別連接AD、DF、AF,AF交DP于點K,當(dāng)點P運動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.
          問題拓展:
          (3)如圖2,以AB為邊作正方形ABCD,動點P、Q在正方形ABCD的邊上運動,且PQ=8.若點P從點A出發(fā),沿A→B→C→D的線路,向點D運動,求點P從A到D的運動過程中,PQ的中點O所經(jīng)過的路徑的長.

          (4)如圖3,在“問題思考”中,若點M、N是線段AB上的兩點,且AM=BN=1,點G、H分別是邊CD、EF的中點,請直接寫出點P從M到N的運動過程中,GH的中點O所經(jīng)過的路徑的長及OM+OB的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠AOB的邊OBx軸正半軸重合,點POA上的一動點,點N(6,0)是OB上的一定點,點MON的中點,∠AOB=30°,要使PM+PN最小,則點P的坐標(biāo)為_____

          查看答案和解析>>

          同步練習(xí)冊答案