日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點A、C,與y軸相交于點B,A(-
          94
          ,0
          ),且△AOB∽△BOC.
          (1)求C點坐標、∠ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關(guān)系式;
          (2)在線段AC上是否存在點M(m,0).使得以線段BM為直徑的圓與邊BC交于P點(與點B不精英家教網(wǎng)同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由.
          分析:(1)由二次函數(shù)y=ax2+bx+3的解析式,首先求出B點坐標,然后由△AOB∽△BOC,根據(jù)相似三角形的對應邊成比例,求出OC的長度,得出C點坐標;根據(jù)相似三角形的對應角相等得出∠OAB=∠OBC,從而得出∠ABC=90°;由y=ax2+bx+3圖象經(jīng)過點A(-
          9
          4
          ,0),C(4,0),運用待定系數(shù)法即可求出此二次函數(shù)的關(guān)系式;
          (2)如果以點P、C、O為頂點的三角形是等腰三角形,那么分三種情況討論:①CP=CO;②PC=PO;③OC=OP.針對每一種情況,都應首先判斷M點是否在線段AC上,然后根據(jù)相似三角形的對應邊成比例求出m的值.
          解答:解:(1)由題意,得B(0,3),
          ∵△AOB∽△BOC,
          ∴∠OAB=∠OBC,
          OA
          OB
          =
          OB
          OC

          2.25
          3
          =
          3
          OC
          ,
          ∴OC=4,∴C(4,0);
          ∴∠OAB+∠OBA=90°,
          ∴∠OBC+∠OBA=90°,
          ∴∠ABC=90°;
          ∵y=ax2+bx+3圖象經(jīng)過點A(-
          9
          4
          ,0),C(4,0),
          81
          16
          a-
          9
          4
          b+3=0
          16a+4b+3=0
          ,
          ∴y=-
          1
          3
          x2+
          7
          12
          x+3;

          精英家教網(wǎng)(2)①如圖1,當CP=CO時,點P在BM為直徑的圓上,
          因為BM為圓的直徑,
          ∴∠BPM=90°,
          ∴PM∥AB,
          ∴△CPM∽△CBA,
          ∴CM:CA=CP:CB,
          CM:6.25=4:5,
          ∴CM=5,
          精英家教網(wǎng)∴m=4-5=-1;
          ②如圖2,當PC=PO時,點P在OC垂直平分線上,
          得PC=
          1
          2
          BC=2.5,
          由△CPM∽△CBA,得CM=
          25
          8

          ∴m=4-
          25
          8
          =
          7
          8
          ;
          ③當OC=OP時,M點不在線段AC上.
          綜上所述,m的值為
          7
          8
          或-1.
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式,相似三角形的性質(zhì),探究等腰三角形的構(gòu)成情況等重要知識點,綜合性強,能力要求高.考查學生分類討論,數(shù)形結(jié)合的數(shù)學思想方法.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
          5
          2
          13
          4
          ),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
          (1)求k,m的值及這個二次函數(shù)的解析式;
          (2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
          (1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
          (2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
          (3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
          (1)求b的值及這個二次函數(shù)的關(guān)系式;
          (2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
          (4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
          (1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
          (2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•衡水一模)如圖,已知二次函數(shù)y=-
          12
          x2+bx+c
          的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
          (1)求這個二次函數(shù)的解析式;
          (2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
          (3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案