日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在△ABC中,∠BAC=45°,AD⊥BC于D點,已知,BD=6,CD=4,則高AD的長為   
          【答案】分析:如圖,過B作BE⊥AC,垂足為E交AD于F,由∠BAC=45°可以得到BE=AE,再根據(jù)已知條件可以證明△AFE≌△BCE,可以得到AF=BC=10,而∠FBD=∠DAC,又∠BDF=∠ADC=90°,由此可以證明△BDF∽△ADC,所以FD:DC=BD:AD,設(shè)FD長為x,則可建立關(guān)于x的方程,解方程即可求出FD,AD的長.
          解答:解:如圖,過B作BE⊥AC,垂足為E交AD于F
          ∵∠BAC=45°
          ∴BE=AE,
          ∵∠C+∠EBC=90°,∠C+∠EAF=90°,
          ∴∠EAF=∠EBC,
          在△AFE與△BCE中,
          ,
          ∴△AFE≌△BCE(ASA)
          ∴AF=BC=BD+DC=10,∠FBD=∠DAC,又∠BDF=∠ADC=90°
          ∴△BDF∽△ADC
          ∴FD:DC=BD:AD
          設(shè)FD長為x
          即x:4=6:(x+10)
          解得x=2
          即FD=2
          ∴AD=AF+FD=10+2=12.
          答:AD長為12.
          故答案為:12.
          點評:此題綜合運用了銳角三角函數(shù)和勾股定理進行計算.注意能夠熟練解二次方程.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學(xué) 來源: 題型:

          20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
          75
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
          (  )
          A、
          1
          2
          B、(
          2
          2
          7
          C、
          1
          4
          D、
          1
          8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
           
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
          16
          cm.

          查看答案和解析>>

          同步練習冊答案