日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
          (1)延長(zhǎng)HF交AB于G,求△AHG的面積.
          (2)操作:固定△ABC,將直角梯形DEFH以每秒1個(gè)單位的速度沿CB方向向右移動(dòng),直到點(diǎn)D與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為DEFH′(如圖).
          探究1:在運(yùn)動(dòng)中,四邊形CDH′H能否為正方形?若能,請(qǐng)求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由.
          探究2:在運(yùn)動(dòng)過(guò)程中,△ABC與直角梯形DEFH′重疊部分的面積為y,求y與t的函數(shù)關(guān)系.精英家教網(wǎng)
          分析:(1)由于三角形AHG和ACB相似,可通過(guò)相似比求出HG的值,然后根據(jù)三角形的面積計(jì)算公式即可求出三角形AHG的面積.
          (2)①首先四邊形CDH′H是個(gè)矩形,如果使四邊形CDH′H成為正方形,那么需滿足的條件是CD=DH′,可先根據(jù)AH:AC的值,求出HC的長(zhǎng)即H′D的長(zhǎng),然后除以梯形的速度即可求出t的值.
          ②要分三種情況進(jìn)行討論:
          一:當(dāng)E在三角形ABC內(nèi)部時(shí),即當(dāng)0≤t≤4時(shí),重合部分是整個(gè)直角梯形,因此可通過(guò)計(jì)算直角梯形的面積得出重合部分的面積.
          二:當(dāng)E在三角形ABC外部,且H′在G點(diǎn)左側(cè)或G點(diǎn)上時(shí),即當(dāng)4<t≤5
          1
          3
          時(shí),重合部分是直角梯形,其面積可用:四邊形CBGH的面積一矩形CDH′H的面積來(lái)求得.
          三:當(dāng)H′在G點(diǎn)右側(cè)一直到D與B重合的過(guò)程中,即當(dāng)5
          1
          3
          <t≤8時(shí),重合部分是個(gè)直角三角形.可通過(guò)計(jì)算這個(gè)直角三角形的面積來(lái)得出關(guān)于S,t的函數(shù)關(guān)系式.
          解答:解:(1)∵AH:AC=2:3,AC=6
          ∴AH=
          2
          3
          AC=
          2
          3
          ×6=4
          又∵HF∥DE,
          ∴HG∥CB,
          ∴△AHG∽△ACB
          AH
          AC
          =
          HG
          BC
          ,即
          4
          6
          =
          HG
          8
          ,
          ∴HG=
          16
          3

          ∴S△AHG=
          1
          2
          AH•HG=
          1
          2
          ×4×
          16
          3
          =
          32
          3


          (2)①能為正方形
          ∵HH′∥CD,HC∥H′D,
          ∴四邊形CDH′H為平行四邊形
          又∠C=90°,
          ∴四邊形CDH′H為矩形
          又CH=AC-AH=6-4=2
          ∴當(dāng)CD=CH=2時(shí),四邊形CDH′H為正方形
          此時(shí)可得t=2秒時(shí),四邊形CDH′H為正方形.
          ②(Ⅰ)∵∠DEF=∠ABC,
          ∴EF∥AB
          ∴當(dāng)t=4秒時(shí),直角梯形的腰EF與BA重合.
          當(dāng)0≤t≤4時(shí),重疊部分的面積為直角梯形DEFH′的面積.
          過(guò)F作FM⊥DE于M,
          FM
          ME
          =tan∠DEF=tan∠ABC=
          AC
          BC
          =
          6
          8
          =
          3
          4

          ∴ME=
          4
          3
          FM=
          4
          3
          ×2=
          8
          3
          ,HF=DM=DE-ME=4-
          8
          3
          =
          4
          3

          ∴直角梯形DEFH′的面積為
          1
          2
          (4+
          4
          3
          )×2=
          16
          3

          ∴y=
          16
          3

          (Ⅱ)∵當(dāng)4<t≤5
          1
          3
          時(shí),重疊部分的面積為四邊形CBGH的面積一矩形CDH′H的面積.
          而S邊形CBGH=S△ABC-S△AHG=
          1
          2
          ×8×6-
          32
          3
          =
          40
          3

          S矩形CDH′H?=2t
          ∴y=
          40
          3
          -2t.
          (Ⅲ)當(dāng)5
          1
          3
          <t≤8時(shí),如圖,設(shè)H′D交AB于P,
          精英家教網(wǎng)BD=8-t
          PD
          DB
          =tan∠ABC=
          3
          4

          ∴PD=
          3
          4
          DB=
          3
          4
          (8-t)
          ∴重疊部分的面積y=S??
          △PDB=
          1
          2
          PD•DB
          =
          1
          2
          3
          4
          (8-t)(8-t)
          =
          3
          8
          (8-t)2=
          3
          8
          t2-6t+24.
          ∴重疊部分面積y與t的函數(shù)關(guān)系式:
          y=
          16
          3
          (0≤ t≤4)
          40
          3
          -2t(4<t≤5
          1
          3
          )
          3
          8
          t2-6t+24(5
          1
          3
          <t≤8)
          點(diǎn)評(píng):本題著重考查了圖形平移變換、三角形相似以及二次函數(shù)的綜合應(yīng)用等重要知識(shí)點(diǎn),
          要注意的是(2)中不確定直角梯形的位置時(shí),要根據(jù)不同的情況進(jìn)行分類討論,不要漏解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
          75
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
          ( 。
          A、
          1
          2
          B、(
          2
          2
          7
          C、
          1
          4
          D、
          1
          8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
           
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
          16
          cm.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案