日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2004•瀘州)如圖,半徑為6.5的⊙O′經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)分別是方程x2+kx+60=0的兩根.
          (1)求A、B兩點(diǎn)的距離;
          (2)求點(diǎn)A和點(diǎn)B的坐標(biāo);
          (3)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•BC時(shí),求點(diǎn)C的坐標(biāo);
          (4)在⊙O′上是否存在點(diǎn)P,使△ABD的面積等于△POD的面積,即S△ABD=S△POD?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(-

          【答案】分析:(1)由于∠BOA=90°,根據(jù)圓周角定理可知:AB的長(zhǎng)即為圓的直徑;
          (2)可在直角三角形OBA中,根據(jù)勾股定理和韋達(dá)定理來求出OA,OB的長(zhǎng);
          (3)已知了OC2=CD•BC,那么三角形OCD和BCO相似,因此∠OBC=∠DOC,此時(shí)可得出弧OC=弧CA,即C是劣弧OA的中點(diǎn),如果連接O′C,根據(jù)垂徑定理可得出O′C垂直平分OA,由此可求出C點(diǎn)的坐標(biāo);
          (4)如果設(shè)O′C和OA的交點(diǎn)為E,可根據(jù)相似三角形OBD和ECD求出OD的長(zhǎng),那么如果S△ABD=S△POD,可據(jù)此求出三角形POD中OD邊上的高,然后同圓O′中點(diǎn)到x軸的最大距離進(jìn)行比較即可得出P是否在圓上.
          解答:解:(1)連接AB.
          ∵∠BOA=90°,
          ∴AB是⊙的直徑.
          ∴AB=13;

          (2)∵OA2+OB2=AB2
          即(OA+OB)2-2OA•OB=169
          又∵OA、OB是方程x2+kx+60=0的兩根
          ∴OA+OB=-k,OA•OB=60
          ∴k2-120=169.
          ∴k=17,k=-17.
          ∵OA+OB=-k>0,
          ∴k<0,
          ∴k=-17.
          方程是x2-17x+60=0解出x=12,x=5.
          ∵OA>OB,
          ∴OA=12,OB=5;

          (3)連接O′C,交AO于E
          由OC2=CD•CB,得
          又∵∠OCB=∠DCO,
          ∴△OCB∽△DCO.
          ∴∠COD=∠CBO,
          ∴弧AC=弧OC,O′C⊥OA.
          ∴OE=AE=6,CE=O′C-O′E=O′C-OB=-4.
          ∴C點(diǎn)坐標(biāo)是(6,-4);

          (4)假定在⊙上存在點(diǎn)P,使S△ABD=S△POD
          ∵OB∥EC
          ∴△OBD∽△ECD
          =
          解得OD=
          ∴S△ABD=AD•BO=,
          ∴S△POD=
          在中,OD邊上的高為13,即點(diǎn)P到x軸的距離為13,
          ∵⊙上的點(diǎn)到x軸的最大距離為9,
          ∴點(diǎn)P不在⊙上,
          故在⊙上不存在點(diǎn)P,使S△ABD=S△POD
          點(diǎn)評(píng):本題考查了一元二次方程的根與系數(shù)的關(guān)系,二次函數(shù)解析式的確定、圖形的面積求法、圓周角定理、相似三角形的判定和性質(zhì)等知識(shí)及綜合應(yīng)用知識(shí)、解決問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2004年四川省瀘州市中考數(shù)學(xué)試卷B卷(解析版) 題型:解答題

          (2004•瀘州)如圖,半徑為6.5的⊙O′經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)分別是方程x2+kx+60=0的兩根.
          (1)求A、B兩點(diǎn)的距離;
          (2)求點(diǎn)A和點(diǎn)B的坐標(biāo);
          (3)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•BC時(shí),求點(diǎn)C的坐標(biāo);
          (4)在⊙O′上是否存在點(diǎn)P,使△ABD的面積等于△POD的面積,即S△ABD=S△POD?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(-

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

          (2004•瀘州)如圖,⊙O為△ABC的外接圓,且AB=AC,過點(diǎn)A的直線交⊙O于D,交BC延長(zhǎng)線于F,DE是BD的延長(zhǎng)線,連接CD.
          (1)求證:∠EDF=∠CDF;
          (2)求證:AB2=AF•AD;
          (3)若BD是⊙O的直徑,且∠EDC=120°,BC=6cm,求AF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年四川省瀘州市中考數(shù)學(xué)試卷A卷(解析版) 題型:選擇題

          (2004•瀘州)如圖,從邊長(zhǎng)為10的正方體的一頂點(diǎn)處挖去一個(gè)邊長(zhǎng)為1的小正方體,則剩下圖形的表面積為( )

          A.600
          B.599
          C.598
          D.597

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年貴州省貴陽(yáng)市烏當(dāng)區(qū)第二中學(xué)中考題型試卷(解析版) 題型:選擇題

          (2004•瀘州)如圖,從邊長(zhǎng)為10的正方體的一頂點(diǎn)處挖去一個(gè)邊長(zhǎng)為1的小正方體,則剩下圖形的表面積為( )

          A.600
          B.599
          C.598
          D.597

          查看答案和解析>>

          同步練習(xí)冊(cè)答案