日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=12,AD=13,則四邊形ABCD的面積為( 。
          A、72B、36C、66D、42
          分析:先根據(jù)勾股定理求出AC的長(zhǎng)度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,再利用三角形的面積公式求解即可.
          解答:解:∵∠ABC=90°,AB=3,BC=4,
          ∴AC=
          AB2+BC2
          =
          32+42
          =5,
          在△ACD中,AC2+CD2=25+144=169=AD2,
          ∴△ACD是直角三角形,
          ∴S四邊形ABCD=
          1
          2
          AB•BC+
          1
          2
          AC•CD,
          =
          1
          2
          ×3×4+
          1
          2
          ×5×12,
          =36.
          故選B.
          點(diǎn)評(píng):本題考查的是勾股定理的逆定理及三角形的面積,能根據(jù)勾股定理的逆定理判斷出△ACD的形狀是解答此題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
          (提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
          (1)求證:PA=PC.
          (2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

          (I)求證:AE=EF;
          (Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案