日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,已知AB=2a,∠A=30°,CD是AB邊的中線,若將△ABC沿CD對折起來,折疊后兩個小△ACD與△BCD重疊部分的面積恰好等于折疊前△ABC的面積的數(shù)學公式
          (Ⅰ)當中線CD等于a時,重疊部分的面積等于________;
          (Ⅱ)有如下結論(不在“CD等于a”的限制條件下):①AC邊的長可以等于a;②折疊前的△ABC的面積可以等于 數(shù)學公式;③折疊后,以A、B為端點的線段AB與中線CD平行且相等.其中,________結論正確(把你認為正確結論的代號都填上,若認為都不正確填“無”).

              ①②③
          分析:(Ⅰ)由于△ABC中AB邊的中線CD等于AB的一半,所以△ABC是直角三角形,易求△ABC的面積,根據(jù)重疊部分的面積等于折疊前△ABC的面積的,即可得出重疊部分的面積;
          (Ⅱ)①假設AC=a成立,根據(jù)等腰三角形的性質及圖形折疊的性質可求出四邊形AB1DC為平行四邊形,再根據(jù)平行四邊形的性質及三角形的面積公式求解;
          ②假設S△ABC=成立,再由△ABC的面積公式可求出AC=a,根據(jù)三角形的三邊關系可求出∠B=60°,由平行四邊形的判定定理可求出四邊形AB2CD為平行四邊形,再根據(jù)平行四邊形的性質及三角形的面積公式求解;
          ③綜合①②可知,以A、B為端點的線段AB與中線CD平行且相等.
          解答:解:(Ⅰ)如右圖,∵CD=AD=a,
          ∴∠DCA=∠A=30°,
          ∴∠CDB=∠DCA+∠A=60°,
          又∵CD=BD=a,
          ∴△BCD是等邊三角形,
          ∴∠BCD=60°,
          ∴∠ACB=∠DCA+∠BCD=90°.
          在直角△ABC中,∠ACB=90°,∠A=30°,AB=2a,
          ∴BC=a,AC=a,
          ∴S△ABC=BC•AC=a2,
          又∵重疊部分的面積等于折疊前△ABC的面積的,
          ∴重疊部分的面積=a2;
          (Ⅱ)對于結論①,若AC=a成立,如圖(一),在△ACD中,由∠CAD=30°,AD=a,
          ∴∠ADC=(180°-∠CAD)=75°,∠CDB=180°-∠ADC=105°,
          ∵∠CDB1=∠CDB,
          ∴∠B1DA=105°-75°=30°,
          ∴AC∥B1D,
          ∵B1D=BD=a=AC,
          ∴四邊形AB1DC為平行四邊形.
          ∴S△CED=S△ACD=S△ABC,滿足條件,即AC的長可以等于a,故①正確;
          對于結論②,若S△ABC=,
          ∵S△ABC=AB•AC•sin∠CAB,
          ∴AC=a,
          ∵AC=a,∠B=60°,如圖(二),
          ∴∠CDB=60°=∠DCB2,
          ∴AD∥B2C,
          又∵B2C=BC=a=AD,
          ∴四邊形AB2CD為平行四邊形,
          ∴S△CFD=S△ACD=S△ABC,滿足條件,
          即S△ABC的值可以等于,故②正確;
          對于結論③,由平行四邊形AB1DC或平行四邊形AB2CD,顯然成立,故③正確.
          故答案為 ;①②③.
          點評:本題考查的是翻折變換的性質及平行四邊形的性質,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等的知識是解答此題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各個內角的度數(shù)是多少?
          (2)如圖,將△ABC紙片沿MN折疊所得的粗實線圍成的圖形的面積與原△ABC的面積之比為3:4,且圖中3個陰影三角形的面積之和為12cm2,則重疊部分的面積為多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2009•雅安)在△ABC中,已知∠A、∠B都是銳角,且sinA=
          3
          2
          ,tanB=1,則∠C的度數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在△ABC中,已知∠A=80°,則∠B、∠C的角平分線相交所成的鈍角為
          130°
          130°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分線MN交AC于D.在下列結論中:①∠C=72°;②BD是∠ABC的平分線;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述結論中,正確的有
          ①②④⑤
          ①②④⑤
          .(填寫序號)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在△ABC中,已知∠A=∠C-∠B,且∠A=70°,則∠B的度數(shù)=
          20°
          20°

          查看答案和解析>>

          同步練習冊答案