日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角坐標系中,以點P(1,-1)為圓心,2為半徑作圓,交x軸于A、B兩點,拋物線y精英家教網(wǎng)=ax2+bx+c(a>0)過點A、B,且頂點C在⊙P上.
          (1)求⊙P上劣弧AB的長;
          (2)求拋物線的解析式;
          (3)在拋物線上是否存在一點D,使線段OC與PD互相平分?若存在,求出點D的坐標;若不存在,請說明理由.
          分析:(1)求劣弧AB的長,就要先知道劣弧AB所對的圓心角的度數(shù).過P作AB的垂線設垂足為M,那么在Rt△PMB中,根據(jù)圓的半徑及P點的縱坐標即可求出∠BPM的度數(shù),也就能求出∠APB的度數(shù).然后根據(jù)弧長公式即可求出劣弧AB的長;
          (2)在Rt△PMB中,根據(jù)PB即半徑的長以及PM即P點縱坐標的絕對值即可求出BM的長,也就求出了AB的值,由于A、B兩點關于直線x=1對稱,由此可確定A、B兩點的坐標.根據(jù)圓和拋物線的對稱性,C點必在直線PM上,根據(jù)P點的坐標和圓的半徑的長即可得出C點的坐標.根據(jù)求出的A、B、C三點的坐標,可用待定系數(shù)法求出拋物線的解析式;
          (3)根據(jù)平行四邊形的判定和性質可知:當線段OC與PD互相平分時,四邊形OPCD是平行四邊形,因此D點在y軸上,且OD=PC=2,因此D點的坐標為(0,-2)然后代入拋物線的解析式中即可判斷出D是否在拋物線上.
          解答:精英家教網(wǎng)解:(1)如圖,連接PB,過P作PM⊥x軸,垂足為M,
          在Rt△PMB中,PB=2,PM=1,
          ∴∠MPB=60°,
          ∴∠APB=120°
          AB
          的長=
          120°
          180°
          •π•2=
          3


          (2)在Rt△PMB中,PB=2,PM=1,則MB=MA=
          3
          ,又OM=1,
          ∴A(1-
          3
          ,0),B(1+
          3
          ,0),
          由拋物線及圓的對稱性得知點C在直線PM上,
          則C(1,-3).
          點A、B、C在拋物線上,則
          0=a(1+
          3
          )2+b(1+
          3
          )+c
          0=a(1-
          3
          )2+b(1-
          3
          )+c
          -3=a+b+c

          解之得
          a=1
          b=-2
          c=-2
          ,
          ∴拋物線解析式為y=x2-2x-2;

          (3)假設存在點D,使OC與PD互相平分,則四邊形OPCD為平行四邊形,且PC∥OD,
          又PC∥y軸,
          ∴點D在y軸上,
          ∴OD=2,即D(0,-2),
          又點D(0,-2)在拋物線y=x2-2x-2上,
          故存在點D(0,-2),使線段OC與PD互相平分.
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、弧長計算公式、平行四邊形的判定和性質等知識點,綜合性強,考查學生數(shù)形結合的數(shù)學思想方法.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
          (24,0)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
          (1)在圖中畫出線段OP′;
          (2)求P′的坐標和
          PP′
          的長度.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
          6
          x
          的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
          3
          2
          倍.
          (1)求點A的坐標;
          (2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
          (3)點D在反比例函數(shù)y=
          6
          x
          的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
          (1)以原點O為位似中心;
          (2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

          (1)△AOB的面積是
          6
          6
          ;
          (2)三角形(2013)的直角頂點的坐標是
          (8052,0)
          (8052,0)

          查看答案和解析>>

          同步練習冊答案