日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直角梯形ABCD中,ADBC,∠C90°,BC16,DC12,AD21.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2兩個(gè)單位長的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)PQ分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).當(dāng)t__________ 時(shí),以B,PQ三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?

          【答案】

          【解析】

          1)由題知QB=16-tAP=21-2t,以BP、Q為頂點(diǎn)的三角形是等腰三角形,分三種情況,①PQ=BQ,②BP=PQ,③PB=BQ分別求出t即可.

          如圖所示,作PM⊥BC,

          由題知QB=16-tAP=21-2t,

          若以BP,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,可以分三種情況:

          PQBQ,在Rt△PMQ中,PQ2t2+122

          PQ2BQ2,得t2+122=(16t2,解得t;

          ②若PBPQ,由PB2PQ2,得(162t2+122t2+122

          整理,得3t264t+2560,

          解得,t1t216(不合題意,舍去),

          BPBQ,在Rt△PMB中,BP2=(162t2+122,

          BP2BQ2,得(162t2+122=(16t2,即3t232t+1440

          ∵△=﹣7040,∴3t232t+1440無解,

          BP≠BQ;

          綜合上面的討論可知:當(dāng)t時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:ABC是等腰三角形,CA=CB,0°<ACB≤90°.點(diǎn)M在邊AC上,點(diǎn)N在邊BC上(點(diǎn)M、點(diǎn)N不與所在線段端點(diǎn)重合),BN=AM,連接AN,BM,射線AGBC,延長BM交射線AG于點(diǎn)D,點(diǎn)E在直線AN上,且AE=DE.

          (1)如圖,當(dāng)∠ACB=90°時(shí)

          ①求證:BCM≌△ACN;

          ②求∠BDE的度數(shù);

          (2)當(dāng)∠ACB=α,其它多件不變時(shí),∠BDE的度數(shù)是   (用含α的代數(shù)式表示)

          (3)若ABC是等邊三角形,AB=3,點(diǎn)NBC邊上的三等分點(diǎn),直線ED與直線BC交于點(diǎn)F,請(qǐng)直接寫出線段CF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】勾股定理a2+b2=c2本身就是一個(gè)關(guān)于a,b,c的方程,滿足這個(gè)方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達(dá)哥拉斯學(xué)派提出了一個(gè)構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個(gè)勾股數(shù)組為_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ABCAB=AC
          1)作圖:在AC上有一點(diǎn)D,延長BD,并在BD的延長線上取點(diǎn)E,使AE=AB,連AE,作∠EAC的平分線AF,AFDE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
          2)在(1)的條件下,連接CF,求證:∠BAC=BFC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BDl,AEl,垂足分別為D、E.

          求證:△AEC≌△CDB;

          2)類比探究:如圖2RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB,連接B,C,求△AB,C的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線a,b,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有  

          A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,∠ACB=90,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMND,BEMNE.

          (1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①位置時(shí),求證:DE=AD+BE;

          (2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②位置時(shí),試問:DEAD,BE有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明.

          (3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖③位置時(shí),DE,ADBE之間的等量關(guān)系是 (直接寫出答案,不需證明.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠A=90°,AB=12,AC=16,點(diǎn)D為邊BC的中點(diǎn),DEBC交邊AC于點(diǎn)E,點(diǎn)P為射線AB上的一動(dòng)點(diǎn),點(diǎn)Q為邊AC上的一動(dòng)點(diǎn),且∠PDQ=90°.

          (1)求ED、EC的長;

          (2)若BP=2,求CQ的長;

          (3)若線段PQ與線段DE的交點(diǎn)為F,當(dāng)△PDF為等腰三角形時(shí),求BP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿AB方向以每秒5個(gè)單位長度的速度向B點(diǎn)勻速運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)同時(shí)出發(fā),以相同的速度沿CA方向向A點(diǎn)勻速運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正PQM(P、Q、M按逆時(shí)針排序),以QC為邊在AC上方作正QCN,設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

          (1)求cosA的值;

          (2)當(dāng)PQMQCN的面積滿足SPQM=SQCN時(shí),求t的值;

          (3)當(dāng)t為何值時(shí),PQM的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在QCN的邊上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案