日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等腰ABC中,ABAC,以AC為直徑作⊙OBC于點D,過點DDEAB,垂足為E

          1)求證:DE是⊙O的切線.

          2)若DE,∠C30°,求的長.

          【答案】(1)證明見解析;(2)

          【解析】

          1)連接OD,只要證明ODDE即可;
          2)連接AD,根據(jù)AC是直徑,得到∠ADC=90°,利用AB=AC得到BD=CD,解直角三角形求得BD,在RtABD中,解直角三角形求得AD,根據(jù)題意證得AOD是等邊三角形,即可OD=AD,然后利用弧長公式求得即可.

          1)證明:連接OD

          ODOC,

          ∴∠C=∠ODC,

          ABAC,

          ∴∠B=∠C

          ∴∠B=∠ODC,

          ODAB

          ∴∠ODE=∠DEB;

          DEAB

          ∴∠DEB90°,

          ∴∠ODE90°

          DEOD,

          DE是⊙O的切線.

          2)連接AD

          AC是直徑,

          ∴∠ADC90°

          ABAC,

          ∴∠B=∠C30°,BDCD

          ∴∠OAD60°,

          OAOD,

          ∴△AOD是等邊三角形,

          ∴∠AOD60°,

          DE=,∠B30°,∠BED90°,

          CDBD2DE2

          ODADtan30°CD,

          的長為:

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖, 在等邊△ABC, D, E, F分別為邊AB, BC, CA上的點, 且滿足∠DEF=60°

          1)求證:;

          2)若DEBCDE=EF, 的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某工廠生產(chǎn)一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本 16 元,工廠將該產(chǎn)品進行網(wǎng)絡批發(fā),批發(fā)單價 y(元)與一次性批發(fā)量 x(件)(x為正整數(shù))之間滿 足如圖所示的函數(shù)關系.

          1)直接寫出 y x之間所滿足的函數(shù)關系式,并寫出自變量 x的取值范圍;

          2)若一次性批發(fā)量不低于 20 且不超過 60 件時,求獲得的利潤 w x 的函數(shù) 關系式,同時當批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在等腰直角三角形中,,,點在斜邊上(),作,且,連接,如圖(1).

          1)求證:;

          2)延長至點,使得,交于點.如圖(2).

          ①求證:

          ②求證:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】綜合與實踐小組開展了測量本校旗桿高度的實踐活動,他們制訂了測量方案,并利用課余時間完成了實地測量.他們在旗桿底部所在的平地上,選取兩個不同測點,分別測量了該旗桿頂端的仰角以及這兩個測點之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點之間的距離時,都分別測量了兩次并取它們的平均值作為測量結(jié)果,測量數(shù)據(jù)如下表(不完整)

          任務一:兩次測量A,B之間的距離的平均值是 m.

          任務二:根據(jù)以上測量結(jié)果,請你幫助綜合與實踐小組求出學校學校旗桿GH的高度.

          (參考數(shù)據(jù):sin25.7°≈0.43cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86tan31°≈0.60)

          任務三:該綜合與實踐小組在定制方案時,討論過利用物體在陽光下的影子測量旗桿的高度的方案,但未被采納.你認為其原因可能是什么?(寫出一條即可).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下面內(nèi)容,并按要求解決問題: 問題:在平面內(nèi),已知分別有個點,個點,個點,5 個點,n 個點,其中任意三 個點都不在同一條直線上.經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線?探究:為了解決這個問題,希望小組的同學們設計了如下表格進行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點的一條直線)

          請解答下列問題:

          1)請幫助希望小組歸納,并直接寫出結(jié)論:當平面內(nèi)有個點時,直線條數(shù)為 ;

          2)若某同學按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個已知點.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面內(nèi),給定不在同一直線上的點A,B,C,如圖所示.點O到點A,BC的距離均等于aa為常數(shù)),到點O的距離等于a的所有點組成圖形G的平分線交圖形G于點D,連接AD,CD

          1)求證:AD=CD

          2)過點DDEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點M,連接CM.若AD=CM,求直線DE與圖形G的公共點個數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知正方形ABCD與正方形CEFG,點ECD上,點GBC的延長線上,MAF的中點,連接DM,EM

          1)填空:DMEM數(shù)量關系和位置關系為   (直接填寫);

          2)若AB4,設CEx0x4),△MEF面積為y,求y關于x的函數(shù)關系式[可利用(1)的結(jié)論],并求出y的最大值;

          3)如果將正方形CEFG繞點C順時針旋轉(zhuǎn)任意角度,我們發(fā)現(xiàn)DMEM數(shù)量關系與位置關系仍未發(fā)生改變.

          ①若正方形ABCD邊長AB13,正方形CEFG邊長CE5,當DE,F三點旋轉(zhuǎn)至同一條直線上時,求出MF的長;

          ②證明結(jié)論:正方形CEFG繞點C順時針旋轉(zhuǎn)任意角度,DMEM數(shù)量關系與位置關系仍未發(fā)生改變.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點的坐標分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________

          查看答案和解析>>

          同步練習冊答案