【題目】閱讀材料:為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則(x2﹣1)2=y2,原方程化為y2﹣5y+4=0.
解得y1=1,y2=4
當(dāng)y=1時(shí),x2﹣1=1.∴x2=2.∴x=±;
當(dāng)y=4時(shí),x2﹣1=4,∴x2=5,∴x=±.
∴原方程的解為x1=,x2=﹣
,x3=
,x4=﹣
,
請(qǐng)利用以上知識(shí)解決下列問題:
如果(m2+n2﹣1)(m2+n2+2)=4,則m2+n2=__.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,對(duì)角線
、
交于點(diǎn)
,已知
,
.
(1)求的長;
(2)點(diǎn)為直線
上的一個(gè)動(dòng)點(diǎn),連接
,將線段
繞點(diǎn)
順時(shí)針旋轉(zhuǎn)
的角度后得到對(duì)應(yīng)的線段
(即
,
交
于點(diǎn)
.
①當(dāng)時(shí),求
的長;
②連接、
,當(dāng)
的長度最小時(shí),求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣4,0).
(1)求二次函數(shù)的解析式;
(2)在拋物線上存在點(diǎn)P,滿足S△AOP=8,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點(diǎn)C為圓心的圓與y軸相切.點(diǎn)A、B在x軸上,且OA=OB.點(diǎn)P為⊙C上的動(dòng)點(diǎn),∠APB=90°,則AB長度的最大值為 _____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),點(diǎn)P是半徑OB上一動(dòng)點(diǎn)(不與O,B重合),過點(diǎn)P作射線l⊥AB,分別交弦BC,于D、E兩點(diǎn),在射線l上取點(diǎn)F,使FC=FD.
(1)求證:FC是⊙O的切線;
(2)當(dāng)點(diǎn)E是的中點(diǎn)時(shí),
① 若∠BAC=60°,判斷以O,B,E,C為頂點(diǎn)的四邊形是什么特殊四邊形,并說明理由;
② 若,且AB=20,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4
(a﹣b)(a4+a3b+a2b2+ab3+b4)=a5﹣b5
……
(1)根據(jù)規(guī)律可得(a﹣b)(an﹣1+an﹣2b+an﹣3b2+…+a2bn﹣3+abn﹣2+bn﹣1)= (其中n為正整數(shù));
(2)仿照上面等式分解因式:a6﹣b6= ;
(3)根據(jù)規(guī)律可得(a﹣1)(an﹣1+an﹣2+…+a2+a+1)= (其中n為正整數(shù));
(4)計(jì)算:(4﹣1)(410+49+48+…+42+4+1)= ;
(5)計(jì)算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)+1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,點(diǎn)
是其內(nèi)部一點(diǎn).
(1)如圖1,點(diǎn)在邊
的垂直平分線
上,將
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn),得到
,當(dāng)點(diǎn)
落在
上時(shí),恰好點(diǎn)
落在直線
上,求
的度數(shù);
(2)如圖2,點(diǎn)在對(duì)角線
上,連接
,若將線段
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
后得到線段
,試問點(diǎn)
是否在直線
上,請(qǐng)給出結(jié)論,并說明理由;
(3)如圖3,若,設(shè)
,
,
,請(qǐng)寫出
、
、
這三條線段長之間滿足的數(shù)量關(guān)系是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象記為
,它與x軸交于點(diǎn)O,
;將
繞點(diǎn)
旋轉(zhuǎn)
得
,交x軸于點(diǎn)
;將
繞點(diǎn)
旋轉(zhuǎn)
得
,交x軸于點(diǎn)
;……如此進(jìn)行下去,得到一條“波浪線”.若
在這條“波浪線”上,則
________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com