日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它們交于H.求證:
          (1)AE=EC;
          (2)AH=2BD.
          分析:(1)求出∠AEC=90°,根據(jù)三角形內(nèi)角和定理求出∠ACE=45°=∠CAE即可;
          (2)求出AE=EC,∠EAH=∠BCE,∠AEH=∠CEB,證△EAH≌△ECB,推出AH=BC,根據(jù)等腰三角形性質(zhì)得出BC=2BD,即可得出答案.
          解答:證明:(1)∵CE是△ABC的高,
          ∴∠AEC=90°,
          ∵∠CAB=45°,
          ∴∠ACE=45°=∠CAE,
          ∴AE=EC.

          (2)∵AD,CE都是△ABC的高,
          ∴∠AEH=∠CEB=∠ADC=90°,
          ∵∠AHE=∠CHD,∠EAH+∠AEH+∠AHE=180°,∠BCE+∠CHD+∠ADC=180°,
          ∴∠EAH=∠BCE,
          在△AEH和△CEB中,
          ∠AEH=∠CEB
          AE=EC
          ∠EAH=∠ECB
          ,
          ∴△AEH≌△CEB(ASA),
          ∴AH=BC,
          ∵AB=AC,AD是△ABC的高,
          ∴BC=2BD,
          ∴AH=2BD.
          點評:本題考查了等腰三角形性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年廣東省湛江市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年廣東省湛江市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年江蘇省鹽城市鹽城中學(xué)初三年級中考模擬數(shù)學(xué)試卷1(解析版) 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          同步練習(xí)冊答案