日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.

          (1)求證:AD=AF;

          (2)求證:BD=EF;

          (3)試判斷四邊形ABNE的形狀,并說明理由.

          【答案】(1)詳見解析;(2)詳見解析;(3)四邊形ABNE是正方形,理由詳見解析.

          【解析】

          試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)可得ABC=ACB=45°,求得ABF=135°ABF=ACD,再證得BF=CD,由SAS證明ABF≌△ACD,即可得出AD=AF;(2)由(1)知AF=AD,ABF≌△ACD,得出FAB=DAC,證出EAF=BAD,由SAS證明AEF≌△ABD,得出對應(yīng)邊相等即可;(3)由全等三角形的性質(zhì)得出得出AEF=ABD=90°,證出四邊形ABNE是矩形,由AE=AB,即可得出四邊形ABNE是正方形.

          試題解析:(1)證明:AB=AC,BAC=90°,

          ∴∠ABC=ACB=45°

          ∴∠ABF=135°,

          ∵∠BCD=90°

          ∴∠ABF=ACD,

          CB=CD,CB=BF,BF=CD,

          ABF和ACD中,

          ,

          ∴△ABF≌△ACD(SAS),

          AD=AF;

          (2)證明:由(1)知,AF=AD,ABF≌△ACD,

          ∴∠FAB=DAC,

          ∵∠BAC=90°,

          ∴∠EAB=BAC=90°,

          ∴∠EAF=BAD,

          AEF和ABD中,

          ,

          ∴△AEF≌△ABD(SAS),

          BD=EF;

          (3)解:四邊形ABNE是正方形;理由如下:

          CD=CB,BCD=90°,

          ∴∠CBD=45°

          由(2)知,EAB=90°AEF≌△ABD,

          ∴∠AEF=ABD=90°

          四邊形ABNE是矩形,

          AE=AB,

          四邊形ABNE是正方形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在括號內(nèi)填寫理由.

          已知:如圖,DGBC ACBCEFAB,∠1=2.求證:CDAB

          證明:∵DGBCACBC

          ∴∠DGB=ACB=90°    

          DGAC   

          ∴∠2=DCA    

          ∵∠1=2∴∠1=DCA   

          EFCD   

          ∴∠AEF=ADC   

          EFAB

          ∴∠AEF=90°

          ∴∠ADC=90° CDAB

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,n+1個直角邊長為1的等腰直角三角形,斜邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,則S1= ,Sn= (用含n的式子表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】M為雙曲線y=上的一點,過點Mx軸、y軸的垂線,分別交直線y=﹣x+m于點D,C兩點,若直線y=﹣x+my軸交于點A,與x軸相交于點B.

          (1)求ADBC的值.

          (2)若直線y=﹣x+m平移后與雙曲線y=交于P、Q兩點,且PQ=3,求平移后m的值.

          (3)若點M在第一象限的雙曲線上運動,試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標;如果不存在,試說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ADABC的邊BC上的高,再添加下列條件中的某一個就能推出ABC是等腰三角形.BD=CD;②∠BAD=∠CAD;③AB+BDAC+CD; AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號正確答案是( )

          A.①②B.①②③C.①②③④D.①②③④⑤.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算.(能用公式計算的請用公式計算)

          1(2)2(2018π)0;

          2(2a2)36a2a4;

          3

          4(2a+b5) (2ab5)

          5

          6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】x滿足(5-x)(x-2=2,求(x-52+2-x2的值;

          解:設(shè)5-x=a,x-2=b,則(5-x)(x-2=ab=2,a+b=5-x+x-2=3

          所以(x-52+2-x2=5-x2+x-22=a2+b2=a+b2-2ab=32-2×2=5,

          請仿照上面的方法求解下面的問題

          1)若x滿足(9-x)(x-4=4,求(9-x2+x-42的值;

          2)已知正方形ABCD的邊長為x,EF分別是AD,DC上的點,且AE=2,CF=4,長方形EMFD的面積是63,分別以MF、DF為邊作正方形,求陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知射線的內(nèi)部,射線平分,射線平分

          1)如圖1,若,則__________度;

          2)若

          ①如圖2,若射線的內(nèi)部繞點旋轉(zhuǎn),求的度數(shù);

          ②若射線的外部繞點旋轉(zhuǎn)(旋轉(zhuǎn)中均是指小于180°的角),其余條件不變,請借助圖3探究的大小,直接寫出的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)有七個數(shù)﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8將它們填入圖13個圓兩兩相交分成7個部分)中,使得每個圓內(nèi)部的4個數(shù)之積相等,設(shè)這個積為m,如圖2給出了一種填法,此時m64,在所有的填法中,m的最大值為_____

          查看答案和解析>>

          同步練習(xí)冊答案