日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)為P(1,-2),且經(jīng)過點(diǎn)A(-3,6),并與x軸交于點(diǎn)B和C.

          (1)求這個(gè)二次函數(shù)的解析式,并求出點(diǎn)C坐標(biāo)及∠ACB的大;
          (2)設(shè)D為線段OC上一點(diǎn),滿足∠DPC=∠BAC,求D的坐標(biāo);
          (3)在x軸上,是否存在點(diǎn)M,使得以M為圓心的圓能與直線AC、直線PC及y軸都相切?如果存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
          (1)∵頂點(diǎn)為P(1,-2),
          ∴設(shè)二次函數(shù)頂點(diǎn)式解析式為y=a(x-1)2-2,
          把點(diǎn)A(-3,6)代入得,a(-3-1)2-2=6,
          解得a=
          1
          2
          ,
          所以,二次函數(shù)解析式為y=
          1
          2
          (x-1)2-2=
          1
          2
          x2-x-
          3
          2

          即y=
          1
          2
          x2-x-
          3
          2
          ;
          令y=0,則
          1
          2
          x2-x-
          3
          2
          =0,
          整理得,x2-2x-3=0,
          解得x1=-1,x2=3,
          ∴點(diǎn)C坐標(biāo)為(3,0);
          ∵A(-3,6),C(3,0),
          ∴tan∠ACB=
          6
          3+3
          =1,
          ∴∠ACB=45°;

          (2)∵點(diǎn)P(1,-2),C(3,0),
          ∴tan∠PCD=
          2
          3-1
          =1,
          ∴∠PCD=45°,
          ∴∠PCD=∠ACB,
          又∵∠DPC=∠BAC,
          ∴△DPC△BAC,
          DC
          BC
          =
          PC
          AC
          ,
          ∵AC=
          62+(3+3)2
          =6
          2
          ,PC=
          22+(3-1)2
          =2
          2
          ,BC=3-(-1)=4,
          DC
          4
          =
          2
          2
          6
          2
          ,
          解得DC=
          4
          3
          ,
          ∴OD=OC-DC=3-
          4
          3
          =
          5
          3
          ,
          ∴點(diǎn)D的坐標(biāo)為(
          5
          3
          ,0);

          (3)如圖,①點(diǎn)M在線段OC上時(shí),設(shè)AC切⊙O于H1,連接MH1,
          ∵⊙M與直線AC相切,
          ∴MH1⊥AC,
          ∵∠ACB=45°,
          ∴OC=OM+CM=OM+
          2
          OM=3,
          解得OM=
          3
          2
          +1
          =3
          2
          -3;
          此時(shí),點(diǎn)M(3
          2
          -3,0);
          ②點(diǎn)M在射線OB上時(shí),設(shè)AC切⊙O于H2,連接MH2,
          ∵⊙M與直線AC相切,
          ∴MH2⊥AC,
          ∵∠ACB=45°,
          ∴OC=CM-OM=
          2
          OM-OM=3,
          解得OM=
          3
          2
          -1
          =3
          2
          +3.
          此時(shí),點(diǎn)M(-3
          2
          -3,0).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          有一個(gè)拋物線形的拱形橋洞,橋洞離水面的最大高度為4m,跨度為10m,建立如圖所示的平面直角坐標(biāo)系.
          (1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)在對(duì)稱軸右邊1m處,橋洞離水面的高是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,直線y=
          3
          5
          x-4分別交x、y軸于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
          (1)求B點(diǎn)的坐標(biāo);
          (2)若D是OA中點(diǎn),過A的直線l(3)把△AOB分成面積相等的兩部分,并交y軸于點(diǎn)C.
          ①求過A、C、D三點(diǎn)的拋物線的函數(shù)解析式;
          ②把①中的拋物線向上平移,設(shè)平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為M、N,試問過M、N、B三點(diǎn)的圓的面積是否存在最小值?若存在,求出圓的面積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=x2-2x-3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
          (1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
          (2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;
          (3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,從O點(diǎn)射出炮彈落地點(diǎn)為D,彈道軌跡是拋物線,若擊中目標(biāo)C點(diǎn),在A測(cè)C的仰角∠BAC=45°,在B測(cè)C的仰角∠ABC=30°,AB相距(1+
          3
          )km,OA=2km,AD=2km.
          (1)求拋物線解析式;
          (2)求拋物線對(duì)稱軸和炮彈運(yùn)行時(shí)最高點(diǎn)距地面的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某玩具廠授權(quán)生產(chǎn)工藝品福娃,每日最高產(chǎn)量為30只,且每日生產(chǎn)的產(chǎn)品全部出售.已知生產(chǎn)x只福娃的成本為R(元),每只售價(jià)P(元),且R,P與x的表達(dá)式分別為R=50+3x,P=170-2x.當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=ax2+bx-
          3
          交x軸于A(-3,0)、B(1,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D在拋物線上,且CDAB,對(duì)稱軸直線l交x軸于點(diǎn)M,連結(jié)CM,將∠CMB繞點(diǎn)M旋轉(zhuǎn),旋轉(zhuǎn)后的兩邊分別交直線BC、直線CD于點(diǎn)E、F.
          (1)求拋物線的解析式;
          (2)當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),射線MF與拋物線的交點(diǎn)坐標(biāo)是______;
          (3)若ME=
          13
          CF,求點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,圖①是一座拋物線型拱橋在建造過程中裝模時(shí)的設(shè)計(jì)示意圖,拱高為30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之間的距離均為15m,B1B5A1A5,將拋物線放在圖②所示的直角坐標(biāo)系中.
          (1)直接寫出圖②中點(diǎn)B1、B3、B5的坐標(biāo);
          (2)求圖②中拋物線的函數(shù)表達(dá)式;
          (3)求圖①中支柱A2B2、A4B4的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在一大片空地上有一堵墻(線段AB),現(xiàn)有鐵欄桿40m,準(zhǔn)備充分利用這堵墻建造一個(gè)封閉的矩形花圃.
          (1)如果墻足夠長(zhǎng),那么應(yīng)如何設(shè)計(jì)可使矩形花圃的面積最大?
          (2)如果墻AB=8m,那么又要如何設(shè)計(jì)可使矩形花圃的面積最大?

          查看答案和解析>>