日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖①,在Rt△ABC 中,∠C=90°,AC= 4cm,BC=3cm,點(diǎn)P由B 出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
          (1)當(dāng)t為何值時(shí),QP∥BC ?
          (2)設(shè)AQP 的面積為y(cm2) ,求y與t之間的函數(shù)關(guān)系式;
          (3)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB 的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;
          (4)如圖②,連接PC,并把PQC沿QC翻折,得到四邊形PQP'C ,那么是否存在某一時(shí)刻t ,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由.
          解:(1)在Rt△ABC中,
          由題意知:AP = 5-t,AQ = 2t
          若PQ∥BC,則△APQ ∽△ABC
          ,∴
            所以當(dāng)時(shí) ,PQ∥BC
          (2)過(guò)點(diǎn)P作PH⊥AC于H. ∵△APH ∽△ABC
           ∴ ∴

          (3)若PQ把△ABC周長(zhǎng)平分,則AP+AQ=BP+BC+CQ.
          , 解得
          若PQ把△ABC面積平分,則,即-+3t=3
          ∵ t=1代入上面方程不成立,
          ∴不存在這一時(shí)刻t,使線段PQ把Rt△ACB的周長(zhǎng)和面積同時(shí)平分.
          (4)過(guò)點(diǎn)P作PM⊥AC于M,PN⊥BC于N,
          若四邊形PQP'C是菱形,那么PQ=PC.
          ∵PM⊥AC于M, ∴QM=CM. ∵PN⊥BC于N,易知△PBN∽△ABC.
           ∴ ∴
           ∴ 解得
          ∴當(dāng)時(shí),四邊形PQP'C 是菱形
          此時(shí),
          在Rt△PMC中,
          ∴菱形PQP'C邊長(zhǎng)為


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•閘北區(qū)一模)已知:如圖1,在Rt△OAC中,AO⊥OC,點(diǎn)B在OC邊上,OB=6,BC=12,∠ABO+∠C=90°.動(dòng)點(diǎn)M和N分別在線段AB和AC邊上.
          (l)求證△AOB∽△COA,并求cosC的值;
          (2)當(dāng)AM=4時(shí),△AMN與△ABC相似,求△AMN與△ABC的面積之比;
          (3)如圖2,當(dāng)MN∥BC時(shí),將△AMN沿MN折疊,點(diǎn)A落在四邊形BCNM所在平面的點(diǎn)為點(diǎn)E.設(shè)MN=x,△EMN與四邊形BCNM重疊部分的面積為y,試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚恚帉?xiě)一道綜合題.
          編寫(xiě)要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫(xiě)出編寫(xiě)意圖和學(xué)生答題情況的預(yù)測(cè).
          材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著B(niǎo)E第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.
          精英家教網(wǎng)
          材料②:已知AC是∠MAN的平分線.
          (1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
          (2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
          (3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
          則AB+AD=
           
          AC(用含α的三角函數(shù)表示).
          精英家教網(wǎng)
          材料③:
          已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).
          精英家教網(wǎng)
          編寫(xiě)試題選取的材料是
           
          (填寫(xiě)材料的序號(hào))
          編寫(xiě)的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
          (2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
          (3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
          試題解答(寫(xiě)出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
          (2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
          (3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).解答下列問(wèn)題:

          1.①.當(dāng)t為何值時(shí),PQ∥BC? 

          2.②.設(shè)⊿AQP的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;

          3.③.是否存在某一時(shí)刻t,使線段PQ恰好把Rt⊿ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;

          4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時(shí)刻t,使四邊形PQC為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由。

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年重慶市萬(wàn)州區(qū)初中數(shù)學(xué)教師專(zhuān)業(yè)知識(shí)競(jìng)賽試卷(解析版) 題型:解答題

          根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚恚帉?xiě)一道綜合題.
          編寫(xiě)要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫(xiě)出編寫(xiě)意圖和學(xué)生答題情況的預(yù)測(cè).
          材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著B(niǎo)E第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.

          材料②:已知AC是∠MAN的平分線.
          (1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
          (2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
          (3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
          則AB+AD=______AC(用含α的三角函數(shù)表示).

          材料③:
          已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).

          編寫(xiě)試題選取的材料是______(填寫(xiě)材料的序號(hào))
          編寫(xiě)的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
          (2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
          (3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
          試題解答(寫(xiě)出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
          (2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
          (3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省九年級(jí)上學(xué)期10月月考數(shù)學(xué)卷 題型:解答題

          已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).解答下列問(wèn)題:

          1.①.當(dāng)t為何值時(shí),PQ∥BC? 

          2.②.設(shè)⊿AQP的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;

          3.③.是否存在某一時(shí)刻t,使線段PQ恰好把Rt⊿ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;

          4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時(shí)刻t,使四邊形PQC為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案