日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).

          (1)以點T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應點分別為A′,B′,C′畫出四邊形TA′B′C′;

          (2)寫出點A′,B′,C′的坐標:

          A′   ,B′   ,C′   ;

          (3)(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應點D′的坐標為   

          【答案】(1)詳見解析;(2)A′(3,5),B′(5,5),C′(7,3);(3)點D′的坐標為(2a﹣1,2b﹣1).

          【解析】

          (1)利用位似圖形的性質(zhì)得出變化后圖形即可;

          (2)利用已知圖形得出對應點坐標;

          (3)利用各點變化規(guī)律,進而得出答案.

          1)如圖所示:四邊形TA′B′C′即為所求;

          (2)A′(3,5),B′(5,5),C′(7,3);

          故答案為:(3,5),(5,5),(7,3);

          (3)在(1)中,∵A(2,3),B(3,3),C(4,2),

          A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);

          ∴D(a,b)為線段AC上任一點,

          則變化后點D的對應點D′的坐標為(2a﹣1,2b﹣1).

          故答案為:(2a﹣1,2b﹣1).

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx經(jīng)過點A(﹣1,)及原點,交x軸于另一點C(2,0),點D(0,m)是y軸正半軸上一動點,直線AD交拋物線于另一點B.

          (1)求拋物線的解析式;

          (2)如圖1,連接AO、BO,若OAB的面積為5,求m的值;

          (3)如圖2,作BEx軸于E,連接AC、DE,當D點運動變化時,AC、DE的位置關系是否變化?請證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上的一個動點,過點Px軸的垂線,垂足為D(m,0),并與直線OA交于點C.

          (1)求直線OA和二次函數(shù)的解析式;

          (2)當點P在直線OA的上方時,

          ①當PC的長最大時,求點P的坐標;

          ②當SPCO=SCDO時,求點P的坐標.

              

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】填空,完成下列說理過程

          如圖,點A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC

          (1)求∠DOE的度數(shù);

          (2)如果∠COD=65°,求∠AOE的度數(shù).

          解:(1)如圖,因為OD是∠AOC的平分線,

          所以∠COD=AOC

          因為OE是∠BOC的平分線,

          所以∠COE=

          所以∠DOE=COD+   =(AOC+BOC)=AOB=   °.

          (2)(1)可知

          BOE=COE=   ﹣∠COD=   °.

          所以∠AOE=   ﹣∠BOE=   °.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:在平面直角坐標系,直線分別交軸于點A、B兩點,OA=5,OAB=60°.

          (1)如圖1,求直線AB的解析式;

          (2)如圖2,P為直線AB上一點,連接OP,DOA延長線上,分別過點P、DOAOP的平行線,兩平行線交于點C,連接AC,AD=m,ABC的面積為S,Sm的函數(shù)關系式;

          (3)如圖3,(2)的條件下,PA上取點E ,使PE=AD, 連接EC,DE,若∠ECD=60°,四邊形ADCE的周長等于22,求S的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某中學將組織七年級學生春游一天,由王老師和甲、乙兩同學到客車租賃公司洽談租車事宜

          1兩同學向公司經(jīng)理了解租車的價格,公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元王老師說我們學校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學想了一下都說知道了價格

          聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

          2公司經(jīng)理問你們準備怎樣租車,甲同學說我的方案是只租用45座的客車可是會有一輛客車空出30個座位;乙同學說我的方案只租用60座客車,正好坐滿且比甲同學的方案少用兩輛客車,王老師在旁聽了他們的談話說從經(jīng)濟角度考慮還有別的方案嗎?如果是你,你該如何設計租車方案并說明理由

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知C,D為線段AB上的兩點,點MN分別為ACBD的中點,若AB13CD5,求線段MN的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,銳角ABC內(nèi)接于O,若O的半徑為6,sinA=,求BC的長.

          【答案】BC=8.

          【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進行求解.

          試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.

          點睛:直徑所對的圓周角是直角.

          型】解答
          結(jié)束】
          22

          【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點BBCx軸,垂足為C,且SABC=5.

          (1)求一次函數(shù)與反比例函數(shù)的解析式;

          (2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

          (3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】根據(jù)下列語句畫圖:

          1)畫∠AOB120°

          2)畫∠AOB的角平分線OC;

          3)反向延長OC得射線OD;

          4)分別在射線OA、OBOD上畫線段OEOFOG2cm;

          5)連接EF、EG、FG

          6)你能發(fā)現(xiàn)EF、EG、FG有什么關系?∠EFG、∠EGF、∠GEF有什么關系?

          查看答案和解析>>

          同步練習冊答案