日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•延慶縣二模)已知:如圖,直線y=
          1
          3
          x
          與雙曲線y=
          k
          x
          交于A、B兩點,且點A的坐標為(6,m).
          (1)求雙曲線y=
          k
          x
          的解析式;
          (2)點C(n,4)在雙曲線y=
          k
          x
          上,求△AOC的面積;
          (3)在(2)的條件下,在x軸上找出一點P,使△AOC的面積等于△AOP的面積的三倍.請直接寫出所有符合條件的點P的坐標.
          分析:(1)先把點A(6,m)代入y=
          1
          3
          x可求出m確定A點坐標,然后把A點坐標再代入y=
          k
          x
          即可求出k的值,從而確定雙曲線y=
          k
          x
          的解析式;
          (2)作CD⊥x軸于D點,AE⊥x軸于E點,先把點C(n,4)代入y=
          12
          x
          可求出n的值,則可確定點C的坐標為(3,4),根據(jù)反比例函數(shù)的性質(zhì)得到S△OCD=S△AOE=
          1
          2
          ×12=6,然后利用
          S△AOC=S四邊形COEA-S△AOE=S四邊形COEA-S△COD=S梯形CDEA,進行計算;
          (3)由(2)得到S△AOC=9,則S△AOP=3,而A點坐標為(6,2),設(shè)P點坐標為(x,0),則
          1
          2
          ×2×|x|=3,解出x即可得到P點坐標.
          解答:解:(1)∵點A(6,m)在直線y=
          1
          3
          x上,
          ∴m=
          1
          3
          ×6=2,
          ∵點A(6,2)在雙曲線y=
          k
          x
          上,
          2=
          k
          6
          ,解得k=12,
          ∴雙曲線的解析式為y=
          12
          x


          (2)作CD⊥x軸于D點,AE⊥x軸于E點,如圖,
          ∵點C(n,4)在雙曲線y=
          12
          x
          上,
          4=
          12
          n
          ,解得n=3,即點C的坐標為(3,4),
          ∵點A,C都在雙曲線y=
          12
          x
          上,
          ∴S△OCD=S△AOE=
          1
          2
          ×12=6,
          ∴S△AOC=S四邊形COEA-S△AOE=S四邊形COEA-S△COD=S梯形CDEA,
          ∴S△AOC=
          1
          2
          (CD+AE)•DE=
          1
          2
          (4+2)×(6-3)=9;
          (3)∵S△AOC=9,
          ∴S△AOP=3,
          設(shè)P點坐標為(x,0),而A點坐標為(6,2),
          ∴S△AOP=
          1
          2
          ×2×|x|=3,解得x=±3,
          ∴P(3,0)或P(-3,0).
          點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)圖象的交點坐標滿足兩函數(shù)的解析式.也考查了待定系數(shù)法求函數(shù)的解析式以及三角形的面積公式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•延慶縣二模)如圖,⊙O的半徑為2,點A為⊙O上一點,OD⊥弦BC于點D,OD=1,則∠BAC的度數(shù)是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•延慶縣二模)如圖,等邊△ABC中,邊長AB=3,點D在線段BC上,點E在射線AC上,點D沿BC方向從B點以每秒1個單位的速度向終點C運動,點E沿AC方向從A點以每秒2個單位的速度運動,當(dāng)D點停止時E點也停止運動,設(shè)運動時間為t秒,若D、E、C三點圍成的圖形的面積用y來表示,則y與t的圖象是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          (2012•延慶縣二模)閱讀下面材料:
          小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
          小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉(zhuǎn)中心將△ABP逆時針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點A落在A′C上時,此題可解(如圖2).
          請你回答:AP的最大值是
          6
          6

          參考小偉同學(xué)思考問題的方法,解決下列問題:
          如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點,則AP+BP+CP的最小值是
          2
          2
          +2
          6
          (或不化簡為
          32+16
          3
          2
          2
          +2
          6
          (或不化簡為
          32+16
          3
          .(結(jié)果可以不化簡)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
          (1)若此方程有實根,求m的取值范圍;
          (2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
          (3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點,連接這兩點間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點時,求出b的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案