日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某數(shù)學(xué)小組用高為1.2米的儀器測量一教學(xué)樓的高CD,如圖,距CD一定距離的A處,用儀器測得教學(xué)樓頂部D的仰角為β,再在A與C之間選一點B,由B處測出教學(xué)樓頂部D的仰角為α,測得A,B之間的距離為4米,若tanα=1.6,tanβ=1.2,則他們能求出教學(xué)樓的高嗎?

          【答案】解:設(shè)DG=x米,
          tanα= ,
          FG= = x,
          tanβ= ,
          GE= = x,
          由題意得,GE﹣GF=4,即 x﹣ x=4,
          解得x=19.2,
          則DC=DG+GC=19.2+1.2=20.4(米).
          答:教學(xué)樓的高為20.4米
          【解析】設(shè)DG=x米,利用正切的定義分別用x表示出FG、EG,根據(jù)題意求出x,結(jié)合圖形計算即可.
          【考點精析】利用關(guān)于仰角俯角問題對題目進行判斷即可得到答案,需要熟知仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面的材料:
          如果函數(shù)y=f(x)滿足:對于自變量x的取值范圍內(nèi)的任意x1 , x2 ,
          ① 若x1<x2 , 都有f(x1)<f(x2),則稱f(x)是增函數(shù);
          ②若x1<x2 , 都有f(x1)>f(x2),則稱f(x)是減函數(shù).
          例題:證明函數(shù)f(x)= (x>0)是減函數(shù).
          證明:假設(shè)x1<x2 , 且x1>0,x2>0
          f(x1)﹣f(x2)= = =
          ∵x1<x2 , 且x1>0,x2>0
          ∴x2﹣x1>0,x1x2>0
          >0,即f(x1)﹣f(x2)>0
          ∴f(x1)>f(x2
          ∴函數(shù)f(x)= (x>0)是減函數(shù).
          根據(jù)以上材料,解答下面的問題:
          (1)函數(shù)f(x)= (x>0),f(1)= =1,f(2)= =
          計算:f(3)= , f(4)= , 猜想f(x)= (x>0)是函數(shù)(填“增”或“減”);
          (2)請仿照材料中的例題證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知A,B,C,D,E,F(xiàn)分別是⊙O上的六等分點,⊙O的半徑是100,在這六點間修建互通的道路(即圖中實線部分為道路),現(xiàn)有如下兩種方案.方案一:如圖1,各條線段長度均相等,記圖中道路長為l1;方案二:如圖2,AQ=BG=CH=DM=EN=FP,點G,H,M,N,P,Q分別是線段AQ,BG,CH,DM,EN,F(xiàn)P的中點,六邊形GHMNPQ是以O(shè)為中心的正六邊形,記圖中道路長為l2;則l1= ;l2=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為(

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知直線y=﹣ x+3與兩坐標(biāo)軸分別相交于A,B兩點,若點P,Q分別是線段AB,OB上的動點,且點P不與A,B重合,點Q不與O,B重合.
          (1)若OP⊥AB于點P,△OPQ為等腰三角形,這時滿足條件的點Q有幾個?請直接寫出相應(yīng)的OQ的長;
          (2)當(dāng)點P是AB的中點時,若△OPQ與△ABO相似,這時滿足條件的點Q有幾個?請分別求出相應(yīng)的OQ的長;
          (3)試探究是否存在以點P為直角頂點的Rt△OPQ?若存在,求出相應(yīng)的OQ的范圍,并求出OQ取最小值時點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉(zhuǎn)60°得△A′B′C′,則點B轉(zhuǎn)過的路徑長為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料

          如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB,EF的中點均為O,連結(jié)BF,CD、CO,顯然點C,F(xiàn),O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
          解決問題
          (1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
          (2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;

          (3)如圖④,若△ABC與△DEF都是等腰三角形,AB,EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出 的值(用含α的式子表示出來)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABD中,AB=4cm,AD=6cm,AF平分∠BAD,點C在AD上,BC⊥AF于點F.若點E是BD的中點,則EF=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為

          查看答案和解析>>

          同步練習(xí)冊答案