日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          (2010•鹽城)已知:函數y=ax2+x+1的圖象與x軸只有一個公共點.
          (1)求這個函數關系式;
          (2)如圖所示,設二次函數y=ax2+x+1圖象的頂點為B,與y軸的交點為A,P為圖象上的一點,若以線段PB為直徑的圓與直線AB相切于點B,求P點的坐標;
          (3)在(2)中,若圓與x軸另一交點關于直線PB的對稱點為M,試探索點M是否在拋物線y=ax2+x+1上?若在拋物線上,求出M點的坐標;若不在,請說明理由.

          【答案】分析:(1)此題應分兩種情況:①a=0,此函數是一次函數,與x軸只有一個交點;
          ②a≠0,此函數是二次函數,可由根的判別式求出a的值,以此確定其解析式;
          (2)設圓與x軸的另一個交點為C,連接PC,由圓周角定理知PC⊥BC;由于PB是圓的直徑,且AB切圓于B,得PB⊥AB,由此可證得△PBC∽△BAO,根據兩個相似三角形的對應直角邊成比例,即可得到PC、BC的比例關系,可根據這個比例關系來設P點的坐標,聯(lián)立拋物線的解析式即可求出P點的坐標;
          (3)連接CM,設CM與PB的交點為Q,由于C、M關于直線PB對稱,那么PB垂直平分CM,即CQ=QM;過M作MD⊥x軸于D,取CD的中點E,連接QE,則QE是Rt△CMD的中位線;在Rt△PCB中,CQ⊥OB,QE⊥BC,易證得∠BQE、∠QCE都和∠CPQ相等,因此它們的正切值都等于(在(2)題已經求得);由此可得到CE=2QE=4BE,(2)中已經求出了CB的長,根據CE、BE的比例關系,即可求出BE、CE、QE的長,由此可得到Q點坐標,也就得到M點的坐標,然后將點M代入拋物線的解析式中進行判斷即可.
          解答:解:(1)當a=0時,y=x+1,圖象與x軸只有一個公共點(1分)
          當a≠0時,△=1-4a=0,a=,此時,圖象與x軸只有一個公共點.
          ∴函數的解析式為:y=x+1或y=x2+x+1;(3分)

          (2)設P為二次函數圖象上的一點,過點P作PC⊥x軸于點C;
          ∵y=ax2+x+1是二次函數,由(1)知該函數關系式為:
          y=x2+x+1,
          ∴頂點為B(-2,0),圖象與y軸的交點
          坐標為A(0,1)(4分)
          ∵以PB為直徑的圓與直線AB相切于點B
          ∴PB⊥AB則∠PBC=∠BAO
          ∴Rt△PCB∽Rt△BOA
          =,故PC=2BC,(5分)
          設P點的坐標為(x,y),
          ∵∠ABO是銳角,∠PBA是直角,
          ∴∠PBO是鈍角,
          ∴x<-2
          ∴BC=-2-x,PC=-4-2x,
          即y=-4-2x,P點的坐標為(x,-4-2x)
          ∵點P在二次函數y=x2+x+1的圖象上,
          ∴-4-2x=x2+x+1(6分)
          解之得:x1=-2,x2=-10
          ∵x<-2,
          ∴x=-10,
          ∴P點的坐標為:(-10,16)(7分)

          (3)點M不在拋物線y=ax2+x+1上(8分)
          由(2)知:C為圓與x軸的另一交點,連接CM,CM與直線PB的交點為Q,過點M作x軸的垂線,垂足為D,取CD的中點E,連接QE,則CM⊥PB,且CQ=MQ,即QE是中位線.
          ∴QE∥MD,QE=MD,QE⊥CE
          ∵CM⊥PB,QE⊥CE,PC⊥x軸
          ∴∠QCE=∠EQB=∠CPB
          ∴tan∠QCE=tan∠EQB=tan∠CPB=
          CE=2QE=2×2BE=4BE,又CB=8,
          故BE=,QE=
          ∴Q點的坐標為(-,
          可求得M點的坐標為(,)(11分)
          ++1=
          ∴C點關于直線PB的對稱點M不在拋物線y=ax2+x+1上.(12分)
          (其它解法,仿此得分)
          點評:此題是二次函數的綜合題,涉及到一次函數、二次函數解析式的確定,圓周角定理,相似三角形的判定和性質,軸對稱的性質,三角形中位線定理,解直角三角形的應用等重要知識,需要特別注意的是(1)題所求的是函數y=ax2+x+1,而沒有明確是一次函數還是二次函數,所以要把兩種情況都考慮到,以免漏解.
          練習冊系列答案
          相關習題

          科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

          (2010•鹽城)已知:函數y=ax2+x+1的圖象與x軸只有一個公共點.
          (1)求這個函數關系式;
          (2)如圖所示,設二次函數y=ax2+x+1圖象的頂點為B,與y軸的交點為A,P為圖象上的一點,若以線段PB為直徑的圓與直線AB相切于點B,求P點的坐標;
          (3)在(2)中,若圓與x軸另一交點關于直線PB的對稱點為M,試探索點M是否在拋物線y=ax2+x+1上?若在拋物線上,求出M點的坐標;若不在,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源:2010年全國中考數學試題匯編《圓》(10)(解析版) 題型:填空題

          (2010•鹽城)已知圓錐的底面半徑為3,側面積為15π,則這個圓錐的高為   

          查看答案和解析>>

          科目:初中數學 來源:2010年全國中考數學試題匯編《三角形》(10)(解析版) 題型:填空題

          (2010•鹽城)已知圓錐的底面半徑為3,側面積為15π,則這個圓錐的高為   

          查看答案和解析>>

          科目:初中數學 來源:2010年江蘇省鹽城市中考數學試卷(解析版) 題型:填空題

          (2010•鹽城)已知圓錐的底面半徑為3,側面積為15π,則這個圓錐的高為   

          查看答案和解析>>

          同步練習冊答案