日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•朝陽(yáng)區(qū)一模)已知拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C(0,3),過(guò)點(diǎn)C作x軸的平行線與拋物線交于點(diǎn)D,拋物線的頂點(diǎn)為M,直線y=x+5經(jīng)過(guò)D、M兩點(diǎn).
          (1)求此拋物線的解析式;
          (2)連接AM、AC、BC,試比較∠MAB和∠ACB的大小,并說(shuō)明你的理由.
          【答案】分析:(1)由于CD∥x軸,將C點(diǎn)縱坐標(biāo)代入直線DM的解析式中,即可得到D點(diǎn)的坐標(biāo),進(jìn)而可得到拋物線的對(duì)稱軸方程,再根據(jù)直線DM的解析式,即可求得拋物線的頂點(diǎn)坐標(biāo),進(jìn)而可利用待定系數(shù)法求得該拋物線的解析式.
          (2)根據(jù)拋物線的解析式,可求得A、B兩點(diǎn)坐標(biāo),即可得到OA=OC=3,故△OAC是等腰直角三角形,若過(guò)B作BP⊥AC于P,則△ABP也是等腰直角三角形,即可得到AP、BP的長(zhǎng),進(jìn)而可求得CP的值,從而在Rt△BCP中求得∠BPC的正切值;同理,可過(guò)M作x軸的垂線,根據(jù)M點(diǎn)的坐標(biāo),即可得到∠MAB的正切值,然后比較這兩個(gè)角的正切值即可得到兩個(gè)角的大小關(guān)系.
          解答:解:(1)∵CD∥x軸且點(diǎn)C(0,3),
          ∴設(shè)點(diǎn)D的坐標(biāo)為(x,3),
          ∵直線y=x+5經(jīng)過(guò)D點(diǎn),
          ∴3=x+5,
          ∴x=-2,
          即點(diǎn)D(-2,3),
          根據(jù)拋物線的對(duì)稱性,設(shè)頂點(diǎn)的坐標(biāo)為M(-1,y),
          又∵直線y=x+5經(jīng)過(guò)M點(diǎn),
          ∴y=-1+5,y=4、即M(-1,4),
          ∴設(shè)拋物線的解析式為y=a(x+1)2+4,
          ∵點(diǎn)C(0,3)在拋物線上,
          ∴a=-1,
          即拋物線的解析式為y=-x2-2x+3.(3分)


          (2)作BP⊥AC于點(diǎn)P,MN⊥AB于點(diǎn)N;
          由(1)中拋物線y=-x2-2x+3可得:
          點(diǎn)A(-3,0),B(1,0),
          ∴AB=4,AO=CO=3,AC=
          ∴∠PAB=45°;
          ∵∠ABP=45°,
          ∴PA=PB=,
          ∴PC=AC-PA=;
          在Rt△BPC中,tan∠BCP==2,
          在Rt△ANM中,∵M(jìn)(-1,4),
          ∴MN=4
          、∴AN=2,
          tan∠NAM==2,
          ∴∠BCP=∠NAM,
          即∠ACB=∠MAB.(8分)
          點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定以及解直角三角形的應(yīng)用,難度適中.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2008•朝陽(yáng)區(qū)一模)我們給出如下定義:若一個(gè)四邊形中存在一組對(duì)邊的平方和等于另一組對(duì)邊的平方和,則稱這個(gè)四邊形為等平方和四邊形,
          (1)寫出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等平方和四邊形的圖形的名稱:
          菱形或正方形
          菱形或正方形

          (2)如圖(1),在梯形ABCD中,AD∥BC,AC⊥BD,垂足為O.求證:AD2+BC2=AB2+DC2,即四邊形ABCD是等平方和四邊形.

          (3)如果將圖(1)中的△AOD繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)α度(0<α<90)后得到圖(2),那么四邊形ABCD能否成為等平方和四邊形?若能,請(qǐng)你證明;若不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)全真模擬試卷(解析版) 題型:解答題

          (2008•朝陽(yáng)區(qū)一模)已知:如圖,在⊙O中,弦CD垂直直徑AB,垂足為M,AB=4,CD=,點(diǎn)E在AB的延長(zhǎng)線上,且
          (1)求證:DE是⊙O的切線;
          (2)將△ODE平移,平移后所得的三角形記為△O′D′E′.求當(dāng)點(diǎn)E′與點(diǎn)C重合時(shí),△O′D′E′與⊙O重合部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)全真模擬試卷(解析版) 題型:解答題

          (2008•朝陽(yáng)區(qū)一模)為了讓學(xué)生知道更多的奧運(yùn)知識(shí),某中學(xué)舉行了一次“奧運(yùn)知識(shí)競(jìng)賽”,為了解這次競(jìng)賽成績(jī)情況,抽取部分學(xué)生成績(jī)(成績(jī)?nèi)≌麛?shù),滿分為100分)作為樣本,繪制了如下的直方圖,請(qǐng)結(jié)合此圖回答下列問(wèn)題:
          (1)此樣本抽取了多少名學(xué)生的成績(jī)?
          (2)此樣本數(shù)據(jù)的中位數(shù)落在哪一個(gè)范圍內(nèi)?
          (3)若這次競(jìng)賽成績(jī)80分以上(不含80分)的學(xué)生可獲獎(jiǎng),請(qǐng)估計(jì)獲獎(jiǎng)人數(shù)占參賽總?cè)藬?shù)的百分比是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)全真模擬試卷(解析版) 題型:選擇題

          (2008•朝陽(yáng)區(qū)一模)某校準(zhǔn)備在八年級(jí)(1)班的10名團(tuán)員中選2名作為“奧運(yùn)志愿者”,其中團(tuán)員晶晶被選中的概率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案