日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,A是以BC為直徑的⊙O上一點(diǎn),于點(diǎn)D,AD⊥BC過(guò)點(diǎn)B作⊙O的切線精英家教網(wǎng),與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
          (1)求證:BF=EF;
          (2)求證:PA是⊙O的切線;
          (3)若FG=BF,且⊙O的半徑長(zhǎng)為3
          2
          ,求BD和FG的長(zhǎng)度.
          分析:(1)根據(jù)切線判定知道EB⊥BC,而AD⊥BC,從而可以確定AD∥BE,那么△BFC∽△DGC,又G是AD的中點(diǎn),就可得出結(jié)論BF=EF.
          (2)要證PA是⊙O的切線,就是要證明∠PAO=90°連接AO,AB,根據(jù)第1的結(jié)論和BE是⊙O的切線和直角三角形的等量代換,就可得出結(jié)論.
          (3)點(diǎn)F作FH⊥AD于點(diǎn)H,根據(jù)前兩問(wèn)的結(jié)論,利用三角形的相似性和勾股定理,可以求出BD和FG的長(zhǎng)度.
          解答:精英家教網(wǎng)(1)證明:∵BC是⊙O的直徑,BE是⊙O的切線,
          ∴EB⊥BC.
          又∵AD⊥BC,
          ∴AD∥BE.
          ∵△BFC∽△DGC,△FEC∽△GAC,
          BF
          DG
          =
          CF
          CG
          EF
          AG
          =
          CF
          CG

          BF
          DG
          =
          EF
          AG

          ∵G是AD的中點(diǎn),
          ∴DG=AG.
          ∴BF=EF.

          (2)證明:連接AO,AB,精英家教網(wǎng)
          ∵BC是⊙O的直徑,
          ∴∠BAC=90°.
          在Rt△BAE中,由(1),知F是斜邊BE的中點(diǎn),
          ∴AF=FB=EF.
          ∴∠FBA=∠FAB.
          又∵OA=OB,
          ∴∠ABO=∠BAO.
          ∵BE是⊙O的切線,
          ∴∠EBO=90°.
          ∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
          ∴PA是⊙O的切線.

          (3)解:過(guò)點(diǎn)F作FH⊥AD于點(diǎn)H,
          ∵BD⊥AD,F(xiàn)H⊥AD,
          ∴FH∥BC.
          由(2),知∠FBA=∠BAF,
          ∴BF=AF.
          由已知,有BF=FG,
          ∴AF=FG,即△AFG是等腰三角形.
          ∵FH⊥AD,
          ∴AH=GH.
          ∵DG=AG,
          ∴DG=2HG.
          HG
          DG
          =
          1
          2

          ∵FH∥BD,BF∥AD,∠FBD=90°,
          ∴四邊形BDHF是矩形,BD=FH.
          ∵FH∥BC,易證△HFG∽△DCG,
          FH
          CD
          =
          FG
          CG
          =
          HG
          DG

          BD
          CD
          =
          FG
          CG
          =
          HG
          DG
          =
          1
          2

          ∵⊙O的半徑長(zhǎng)為3
          2
          ,
          ∴BC=6
          2

          BD
          CD
          =
          BD
          BC-BD
          =
          BD
          6
          2
          -BD
          =
          1
          2

          解得BD=2
          2

          ∴BD=FH=2
          2

          FG
          CG
          =
          HG
          DG
          =
          1
          2
          ,
          ∴CF=3FG.
          在Rt△FBC中,
          ∵CF=3FG,BF=FG,
          ∴CF2=BF2+BC2∴(3FG)2=FG2+(6
          2
          2
          解得FG=3(負(fù)值舍去)
          ∴FG=3.
          點(diǎn)評(píng):本題考查的是切線的判定,要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          19、如圖有一個(gè)矩形花壇ABCD,有個(gè)別人貪圖方便,從E點(diǎn)直插過(guò)去到C點(diǎn),已知BE=7米,BC=24米,那么這些人以踐踏花草為代價(jià),僅僅是只少走了
          6
          米的路程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,平面直角坐標(biāo)系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過(guò)點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
          (1)求證:△AOD∽△DCE;
          (2)若點(diǎn)A坐標(biāo)為(0,4),點(diǎn)C坐標(biāo)為(7,0).
          ①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),拋物線y=ax2+bx+c過(guò)A、F、B三點(diǎn),求點(diǎn)F的坐標(biāo)及a、b、c的值;
          ②若點(diǎn)D(k,0)是線段OC上任意一點(diǎn),點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)說(shuō)明理由;如果不在,請(qǐng)舉反例說(shuō)明;
          (3)若點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否也存在一條拋物線,使得點(diǎn)F都落在該拋物線上?若存在,請(qǐng)直接用含m精英家教網(wǎng)、n的代數(shù)式表示該拋物線;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過(guò)棱CD,并與棱BB′交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
          解決問(wèn)題:
          (1)CQ與BE的位置關(guān)系是
          CQ∥BE
          CQ∥BE
          ,BQ的長(zhǎng)是
          3
          3
          dm;
          (2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
          (3)求α的度數(shù).(注:sin49°=cos41°=
          3
          4
          ,tan37°=
          3
          4


          拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
          延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長(zhǎng)方形隔板(厚度忽略不計(jì)),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α=60°時(shí),通過(guò)計(jì)算,判斷溢出容器的液體能否達(dá)到4dm3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省金華四中九年級(jí)畢業(yè)生學(xué)業(yè)考試模擬數(shù)學(xué)卷(帶解析) 題型:解答題

          如圖1,在等腰梯形ABCO中,ABCO,EAO的中點(diǎn),過(guò)點(diǎn)EEFOCBCF,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OCx軸正半軸上,點(diǎn)A,B在第一象限內(nèi).
          (1)求點(diǎn)E的坐標(biāo)及線段AB的長(zhǎng);
          (2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)PPMEFOC于點(diǎn)M,過(guò)MMNAO交折線ABC于點(diǎn)N,連結(jié)PN,設(shè)PE=x.△PMN的面積為S.
          ①求S關(guān)于x的函數(shù)關(guān)系式;
          ②△PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由.若存在,求出面積的最大值;

          (3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2).設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為EDGH′(如圖3);試探究:在運(yùn)動(dòng)過(guò)程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省九年級(jí)畢業(yè)生學(xué)業(yè)考試模擬數(shù)學(xué)卷(解析版) 題型:解答題

          如圖1,在等腰梯形ABCO中,ABCOEAO的中點(diǎn),過(guò)點(diǎn)EEFOCBCF,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OCx軸正半軸上,點(diǎn)AB在第一象限內(nèi).

          (1)求點(diǎn)E的坐標(biāo)及線段AB的長(zhǎng);

          (2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)PPMEFOC于點(diǎn)M,過(guò)MMNAO交折線ABC于點(diǎn)N,連結(jié)PN,設(shè)PE=x.△PMN的面積為S.

          ①求S關(guān)于x的函數(shù)關(guān)系式;

          ②△PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由.若存在,求出面積的最大值;

          (3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2).設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為EDGH′(如圖3);試探究:在運(yùn)動(dòng)過(guò)程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案