【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)
的圖象交于點
和
兩點,記一次函數(shù)
的圖象與坐標(biāo)軸的交點分別為
,連接
(1)求與
的值;
(2)求證:
【答案】(1),
,b=1;(2)見解析.
【解析】
(1)先將點代入反比例函數(shù)的解析式可得
的值,從而可求出點P的坐標(biāo),再利用待定系數(shù)法可求出
與b的值;
(2)先根據(jù)(1)可得一次函數(shù)的解析式,由此可得出點A、B的坐標(biāo),從而可得OA、OB的長,再根據(jù)等腰三角形的性質(zhì)可得,然后利用兩點之間的距離公式可得OP、OQ的長,從而可得
,最后根據(jù)三角形全等的判定定理即可得證.
(1)將代入反比例函數(shù)
得
,解得
則反比例函數(shù)的解析式為
將代入反比例函數(shù)
得
,解得
將,
代入一次函數(shù)
得
解得
綜上,,
,
;
(2)由(1)可知,一次函數(shù)解析式為
當(dāng)時,
當(dāng)時,
又,
在和
中,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線:
與直線l:
交于x軸上的一點A,和另一點
求拋物線
的解析式;
點P是拋物線
上的一個動點
點P在A,B兩點之間,但不包括A,B兩點
于點M,
軸交AB于點N,求MN的最大值;
如圖2,將拋物線
繞頂點旋轉(zhuǎn)
后,再作適當(dāng)平移得到拋物線
,已知拋物線
的頂點E在第一象限的拋物線
上,且拋持線
與拋物線
交于點D,過點D作
軸交拋物線
于點F,過點E作
軸交拋物線
于點G,是否存在這樣的拋物線
,使得四邊形DFEG為菱形?若存在,請求E點的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠ABC=90°,AB=BC,將△ABC繞點A逆時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<90°),直線BD與CE交于點F.
(1)如圖1,當(dāng)α=45°時,求證:CF=EF;
(2)如圖2,在旋轉(zhuǎn)過程中,當(dāng)α為任意銳角時,
① ∠CFB的度數(shù)是否變化?若不變,請求出它的度數(shù);
② 結(jié)論“CF=EF”,是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾分類就是新時尚”.樹立正確的垃圾分類觀念,促進青少年養(yǎng)成良好的文明習(xí)慣,對于增強公共意識,提升文明素質(zhì)具有重要意義.為了調(diào)査學(xué)生對垃圾分類知識的了解情況,從甲、乙兩校各隨機抽取20名學(xué)生進行了相關(guān)知識測試,獲得了他們的成績(百分制,單位:分),并對數(shù)據(jù)(成績)進行了整理、描述和分析,下面給出了部分信息.
a.甲、乙兩校學(xué)生樣本成績頻數(shù)分布表及扇形統(tǒng)計圖如下:
甲校學(xué)生樣本成績頻數(shù)分布表(表1)
成績m(分) | 頻數(shù) | 頻率 |
0.10 | ||
4 | 0.20 | |
7 | 0.35 | |
2 | ||
合計 | 20 | 1.0 |
b.甲、乙兩校學(xué)生樣本成績的平均分、中位數(shù)、眾數(shù)、方差如下表所示:(表2)
學(xué)校 | 中位數(shù) | 眾數(shù) | 方差 | |
甲 | 76.7 | 77 | 89 | 150.2 |
乙 | 78.1 | 80 | 135.3 |
其中,乙校20名學(xué)生樣本成績的數(shù)據(jù)如下:
54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 68 91
請根據(jù)所給信息,解答下列問題:
(1)表1中___________;表2中的眾數(shù)
_________;
(2)乙校學(xué)生樣本成績扇形統(tǒng)計圖(圖1)中,這一組成績所在扇形的圓心角度數(shù)是_________度;
(3)在此次測試中,某學(xué)生的成績是79分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是________校的學(xué)生(填“甲”或“乙”),理由是________________________;
(4)若乙校1000名學(xué)生都參加此次測試,成績80分及以上為優(yōu)秀,請估計乙校成績優(yōu)秀的學(xué)生約為________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點A(﹣5,0)作垂直于x軸的直線AB,直線y=x+b與雙曲線y=﹣相交于點P(x1,y1)、Q(x2,y2),與直線AB相交于點R(x3,y3).若y1>y2>y3時,則b的取值范圍是( 。
A.b>4B.b>4或b<﹣4
C.﹣<b<﹣4或b>4D.4<b<
或b<﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過一點分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成的矩形的周長與面積相等,則稱這個點為“美好點”,如圖,過點P分別作x軸,y軸的垂線,與坐標(biāo)軸圍成的矩形OAPB的周長與面積相等,則P為“美好點”.
(1)在點M(2,2),N(4,4),Q(﹣6,3)中,是“美好點”的有 ;
(2)若“美好點”P(a,﹣3)在直線y=x+b(b為常數(shù))上,求a和b的值;
(3)若“美好點”P恰好在拋物線y=x2第一象限的圖象上,在x軸上是否存在一點Q使得△POQ為直角三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級共有 150 名女生,為了解該年級女生實心球成績(單位:米)和一分鐘仰臥起坐成績(單位:個)的情況,從中隨機抽取 30 名女生進行測試,獲得了她們的相關(guān)成績,并對數(shù)據(jù)進行了整理,下面給出了部分信息.
a.實心球成績的頻數(shù)分布如表所示:
b.實心球成績在 7.0≤x<7.4 這一組的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3
c.一分鐘仰臥起坐成績?nèi)鐖D所示:
根據(jù)以上信息,回答下列問題:
(1)①表中 m 的值為 ;②一分鐘仰臥起坐成績的中位數(shù)為 ;
(2)若實心球成績達(dá)到 7.2 米及以上時,成績記為優(yōu)秀.
①請估計全年級女生實心球成績達(dá)到優(yōu)秀的人數(shù);
②該年級某班體育委員將本班在這次抽樣測試中被抽取的 8 名女生的兩項成績的數(shù)據(jù)抄錄如表所示:
其中有 3 名女生的一分鐘仰臥起坐成績未抄錄完整,但老師說這 8 名女生中恰好有4 人兩項測試成績都達(dá)到了優(yōu)秀,于是體育委員推測女生 E 的一分鐘仰臥起坐成績達(dá)到了優(yōu)秀,你是否同意體育委員的說法? (填“是”或“否”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年的新冠疫情爆發(fā),使很多農(nóng)作物積壓沒法正常銷售。為解決農(nóng)民的困難,我市某食品加工公司主動分兩次采購了一批竹筍, 第一次花費40萬元,第二次花費60萬元。已知第一次采購時每百千克竹筍的價格比去年的平均價格上漲了500元,第二次采購時每百千克竹筍的價格比去年的平均價格下降了500元,第二次的采購數(shù)量是第一次采購數(shù)量的兩倍.
(1)試問去年每百千克竹筍的平均價格是多少元;
(2)該公司可將竹筍加工成筍干或罐頭(濕筍),若單獨加工成筍干,每天可加工8百千克竹筍,每百千克竹筍獲利1000元; 若單獨加工成罐頭,每天可加工12百千克竹筍,每百千克竹筍獲利600元,由于市場需要,所有采購的竹筍必需在30天內(nèi)加工完畢,且加工筍干的竹筍數(shù)量不少于加工罐頭的竹筍數(shù)量的一半,為獲得最大利潤,應(yīng)將多少百千克竹筍加工成筍干?最大利潤為多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com