日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

          (1)m=   ,n=   ;

          (2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

          (3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

          【答案】(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.

          【解析】(1)根據(jù)題意將第12天的售價、第26天的售價代入即可得

          (2)(1)的基礎(chǔ)上分段表示利潤,討論最值;

          (3)分別在(2)中的兩個函數(shù)取值范圍內(nèi)討論利潤不低于870的天數(shù),注意天數(shù)為正整數(shù).

          (1)當?shù)?/span>12天的售價為32/件,代入y=mx﹣76m

          32=12m﹣76m,

          解得m=,

          當?shù)?/span>26天的售價為25/千克時,代入y=n,

          n=25,

          故答案為:m=,n=25;

          (2)由(1)第x天的銷售量為20+4(x﹣1)=4x+16,

          1≤x<20,

          W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,

          ∴當x=18時,W最大=968,

          20≤x≤30時,W=(4x+16)(25﹣18)=28x+112,

          28>0,

          Wx的增大而增大,

          ∴當x=30時,W最大=952,

          968>952,

          ∴當x=18時,W最大=968;

          (3)1≤x<20時,令﹣2x2+72x+320=870,

          解得x1=25,x2=11,

          ∵拋物線W=﹣2x2+72x+320的開口向下,

          11≤x≤25時,W≥870,

          11≤x<20,

          x為正整數(shù),

          ∴有9天利潤不低于870,

          20≤x≤30時,令28x+112≥870,

          解得x≥27

          27≤x≤30

          x為正整數(shù),

          ∴有3天利潤不低于870,

          ∴綜上所述,當天利潤不低于870元的天數(shù)共有12天.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】對非負有理數(shù)x“四舍五入到個位的值記為<x>.即n為非負整數(shù)時,如果時, <x>=n,例如:<0><0.48>0;<0.64><1.493>1<2>2<3.52><4.48>4;……嘗試解決下列問題:

          1)填空:①<3.49>__________;②如果<2a-1>3,那么a的取值范圍是__________

          2)舉例說明<x+y><x> + <y>不恒成立;

          3)求滿足<x>的所有非負有理數(shù)x的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】小柔要榨果汁,她有蘋果、芭樂、柳丁三種水果,且其顆數(shù)比為9:7:6,小柔榨完果汁后,蘋果、芭樂、柳丁的顆數(shù)比變?yōu)?/span>6:3:4,已知小柔榨果汁時沒有使用柳丁,關(guān)于她榨果汁時另外兩種水果的使用情形,下列敘述何者正確?( 。

          A. 只使用蘋果

          B. 只使用芭樂

          C. 使用蘋果及芭樂,且使用的蘋果顆數(shù)比使用的芭樂顆數(shù)多

          D. 使用蘋果及芭樂,且使用的芭樂顆數(shù)比使用的蘋果顆數(shù)多

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】P、Q分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設(shè)運動時間為t秒.

          連接AQCP交于點M,則在P、Q運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);

          連接PQ,

          秒時,判斷的形狀,并說明理由;

          時,則______直接寫出結(jié)果

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,AMBN是⊙O的兩條切線,E為⊙O上一點,過點E作直線DC分別交AM,BN于點D,C,且CB=CE.

          (1)求證:DA=DE;

          (2)若AB=6,CD=4,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點EBC上,EF⊥AB,垂足為F.

          1CDEF平行嗎?為什么?

          2)如果∠1=∠2,CD平分∠ACB,且∠3=120°,求∠ACB∠1的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(本題7分)如圖,點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF,請從下列三個條件:AB=DE;②∠A=D;③∠ACB=DFE中選擇一個合適的條件,使ABED成立,并給出證明.

          (1)選擇的條件是 (填序號)

          (2)證明:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】老張裝修完新房,元旦期間到商場購買冰箱、電視機和洗衣機三件家電,剛好該商場推出新年優(yōu)惠活動,具體優(yōu)惠情況如下表:

          購物金額(原價)

          折扣優(yōu)惠

          不超過3000元的部分

          無折扣優(yōu)惠

          超過3000元但不超過10000元部分

          九五折(

          超過10000元的部分

          九折

          付款時,還可以享受單筆消費滿2000元立減160元優(yōu)惠

          如:買原價5000元的商品,實際花費:

          (元)

          1)已知老張購買的這三件家電原價合計為11500元,如果一次性支付,請求出他的實際花費;

          2)如果在該商場購買一件原價為元的商品().請用含的代數(shù)式表示實際花費;

          3)付款前,老張突然想到:如果一次性支付,雖然折扣優(yōu)惠更大,卻只能享受一次立減160元優(yōu)惠,如果將這三件家電分開支付或者兩件合并支付.另一件單獨支付,就可以享受多次立減160元優(yōu)惠,已知老張購買的冰箱原價4800元,電視機原價4600元,洗衣機原價2100元,請你通過計算幫老張設(shè)計出最優(yōu)惠的支付方案.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,∠BAC=90°AB=AC,點EAC上(且不與點AC重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以ABAD為鄰邊作平行四邊形ABFD,連接AF

          1)請直接寫出線段AF,AE的數(shù)量關(guān)系

          2)將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;

          3)在圖的基礎(chǔ)上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖寫出證明過程;若變化,請說明理由.

          查看答案和解析>>

          同步練習冊答案