日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,∠BAC的平分線AD交⊙O于點D,過點DDEACAC的延長線于點E

          1)求證:DE是⊙O的切線;

          2)如果∠BAC=60°,AE=,求AC長.

          【答案】1)見解析;(2

          【解析】

          1)連接OD,先證明ODAE,再利用DEAE得到DEOD然后根據(jù)切線的判定定理得到結(jié)論.

          2)作OFAC,可求出∠DAE=30°,根據(jù)矩形的性質(zhì)得到OF=DE=4,在根據(jù)勾股定理求得AFAC=2AF即可求得結(jié)果.

          解: 1)證明:連接OD,如圖

          ∵∠BAC的平分線AD交⊙O于點D

          ∴∠BAD=DAC;

          OA=OD,∴∠OAD=ODA,

          ∴∠ODA=DAC;

          ODAE;

          DEAE,

          DEOD,OD 為半徑;

          DE是⊙O的切線;

          2)解:作OFACF,

          ∵∠BAC=60°,∴∠DAE=30°;

          RtADE中,;

          四邊形ODEF為矩形,

          OF=DE=4;

          RtOAF中,∵∠OAF=60°,

          ;

          AC=2AF=.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙O,分別交BC,AC于點D,E,過點DDFAC于點F

          1)求證:DF是⊙O的切線;

          2)若∠C60°,⊙O的半徑為2,求由弧DE,線段DF,EF圍成的陰影部分的面積(結(jié)果保留根號和π

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,ABC中,AB=ACD,E分別是邊BCAC上的點.且BD=EC,ADE=∠B

          1)求證:AD=DE

          2)若ADE=40°,求ADB的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為4,將ADECDF分別沿直線DEDF折疊后,點A和點C同時落在點H處,且EAB中點,射線DHACG,交CBM,則GH的長是__

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′ E處,AD′ CE交于點F,若∠B=55°,∠DAE=20°,則∠FED′ 的大小為( )

          A.20°B.30°

          C.35°D.45°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

          A. 大于0 B. 等于0 C. 小于0 D. 不能確定

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖⑴,在△ABC中,∠C=90°AC=8cm,BC=6cm M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s .連接MN,設運動時間為t(s)0t4﹚,解答下列問題:

          ⑴設△AMN的面積為S,求St之間的函數(shù)關系式,并求出S的最大值;

          ⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;

          ⑶當t的值為 ,△AMN是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,的內(nèi)角,,

          1平分,交于點,過點,過點,判斷四邊形的形狀:________;

          2)旋轉(zhuǎn),如圖2,邊于點,連接,AE=AF.過點,過點.問:是否平分.若是請證明,若不是請說明理由.

          3)四邊形在(2)的條件下,若恰好,如圖3.連接并延長,交的延長線于點.求證:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點A,B為定點,定直線l//AB,Pl上一動點.點M,N分別為PA,PB的中點,對于下列各值:

          線段MN的長;

          ②△PAB的周長;

          ③△PMN的面積;

          直線MN,AB之間的距離;

          ⑤∠APB的大。

          其中會隨點P的移動而變化的是( )

          A. ②③ B. ②⑤ C. ①③④ D. ④⑤

          查看答案和解析>>

          同步練習冊答案