日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,AB邊的垂直平分線BCD,AC邊的垂直平分線BCE, 相交于點O,ADE的周長為6cm

          1)求BC的長;

          2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長;

          【答案】(1)6cm,(2)5cm.

          【解析】試題分析:(1)由在ABC中,AB邊的垂直平分線l1BCDAC邊的垂直平分線l2BCE,l1l2相交于點O,可得AD=BD,AE=CE,繼而可得BC=ADE的周長;

          2)由在ABC中,AB邊的垂直平分線l1BCDAC邊的垂直平分線l2BCE,l1l2相交于點O,可得OA=OB=OC,繼而求得答案.

          試題解析:(1∵在ABC中,AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCE,l1l2相交于點O,

          AD=BDAE=CE,

          ∵△ADE的周長為6cm

          B=BD+DE+CE=AD+DE+AE=6cm;

          2)連結(jié)OA、OBOC,

          ∵在ABC中,AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCE,l1l2相交于點O

          OA=OB,OA=OC

          OA=OB=OC,

          ∵△OBC的周長為16cm

          OB+OC+BC=16cm,

          OB=OC=5cm,

          OA=5cm.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.

          (1)求一次函數(shù)與反比例函數(shù)的解析式;
          (2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
          (3)求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知C是∠AOB的平分線上一點,點P,P′分別在邊OA,OB上,如果要得到OP=OP′,需要添加以下條件中的某一個,那么所有可能結(jié)果的序號為________

          ①∠OCP=OCP′;②∠OPC=OP′C;PC=P′C;PP′OC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】暑假期間,某學(xué)校計劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設(shè)計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.

          (1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
          (2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學(xué)校現(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點O為坐標原點,△ABC是直角三角形,∠ACB=90°,點B、C都在第一象限內(nèi),CA⊥x軸,垂足為點A,反比例函數(shù)y1= 的圖象經(jīng)過點B;反比例函數(shù)y2= 的圖象經(jīng)過點C( ,m).

          (1)求點B的坐標;
          (2)△ABC的內(nèi)切圓⊙M與BC,CA,AB分別相切于D,E,F(xiàn),求圓心M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為48和36,求△EDF的面積________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標為A(m,2).

          (1)求m的值和一次函數(shù)的解析式;

          (2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

          (3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側(cè)),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側(cè),PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形

          (1)求該拋物線的解析式;
          (2)求點P的坐標;
          (3)求證:CE=EF;
          (4)連接PE,在x軸上點Q的右側(cè)是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標;若不存在,請說明理由.[注:3+2 =( +1)2].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)如圖1ABC中,EFAC交于點G,與BC的延長線交于點F,∠B=45°

          F30°,∠CGF70°,求∠A的度數(shù).

          2)利用三角板也能畫出一個角的平分線,畫法如下:①利用三角板在∠AOB的兩邊上分

          別取OMON:②分別過點M、NOMON的垂線,交點為;③畫射線OP,所以射線OP為∠AOB的角平分線,請你評判這種作法的正確性并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案