日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在Rt△ABC中,∠ACB=90°AC=10cm,BC=15cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動,點P,Q分另從起點同時出發(fā),移動到某一位置時所需時間為t秒.
          (1)當t=4時,求線段PQ的長度;
          (2)當t為何值時,△PQC的面積等于16cm2
          (3)點O為AB的中點,連接OC,能否使得PQ⊥OC?若能,求出t值;若不能,說明理由.

          【答案】分析:(1)由于點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動,點Q從C出發(fā)沿CB向B點以2厘米/秒,而t=4,由此可以用t表示AP、PC、CQ的長度,然后利用勾股定理即可求出PQ的長度;
          (2)首先用t分別表示CP,CQ的長度,然后利用三角形的面積公式即可列出關(guān)于t的方程,解方程即可解決問題;
          (3)能夠使得PQ⊥OC,利用直角三角形的斜邊中點的性質(zhì)可以證明△ABC和△PCQ相似,然后利用相似三角形的性質(zhì)列出關(guān)于t的方程,解方程即可求出t的值.
          解答:解:(1)當t=4時,
          ∵點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動,點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動,
          ∴AP=4cm,PC=AC-AP=6cm、CQ=2×4=8cm,
          ∴PQ==10cm;

          (2)∵AP=t,PC=AC-AP=10-t、CQ=2t,
          ∴S△PQC=PC×CQ=t(10-t)=16,
          ∴t1=2,t2=8,
          當t=8時,CQ=2t=16>15,∴舍去,
          ∴當t=2時,△PQC的面積等于16cm2;

          (3)能夠使得PQ⊥OC,如圖所示:
          ∵點O為AB的中點,∠ACB=90°,
          ∴OA=OB=OC(直角三角形斜邊上中線定理),
          ∴∠A=∠OCA,
          而∠OCA+∠QPC=90°,∠A+∠B=90°,
          ∴∠B=∠QPC,又∠ACB=∠PCQ=90°,
          ∴△ABC∽△QPC,
          ,
          ,
          ∴t=2.5s.
          ∴當t=2.5s時,PQ⊥OC.
          點評:此題比較難,內(nèi)容比較多,也是一個動點問題,考查了勾股定理、三角形的面積公式、相似三角形的性質(zhì)與判定等知識,綜合性很強,對于學生的能力要求比較高.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
          (1)求證:BC是⊙O的切線;
          (2)若CD=6,AC=8,求AE.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
          (1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
          (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
          (3)如果△CEF與△DEF相似,求AD的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,BD⊥AC,sinA=
          3
          5
          ,則cos∠CBD的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
          5
          cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
          (1)當點P在線段DE上運動時,線段DP的長為
          (t-2)
          (t-2)
          cm,(用含t的代數(shù)式表示).
          (2)當點N落在AB邊上時,求t的值.
          (3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習冊答案