日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AC⊥BC,AC=BC=4,以AC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作 .過點(diǎn)O作BC的平行線交兩弧于點(diǎn)D、E,則陰影部分的面積是

          【答案】 π﹣2
          【解析】解:如圖,連接CE. ∵AC⊥BC,AC=BC=4,以AC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作 ,
          ∴∠ACB=90°,OA=OC=OD=2,BC=CE=4.
          又∵OE∥BC,
          ∴∠AOE=∠COE=90°.
          ∴在直角△OEC中,OC= CE,
          ∴∠OEC=30°,OE=2
          ∴∠ECB=∠OEC=30°,
          ∴S陰影=S扇形ACB﹣S扇形AOD﹣S扇形ECB﹣SOCE= ×2×2 = π﹣2
          所以答案是: π﹣2

          【考點(diǎn)精析】掌握扇形面積計(jì)算公式是解答本題的根本,需要知道在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,點(diǎn)D為邊BC的中點(diǎn),過點(diǎn)A作射線AE,過點(diǎn)CCFAE于點(diǎn)F,過點(diǎn)BBGAE于點(diǎn)G,連接FD并延長,交BG于點(diǎn)H.

          (1)求證:DF=DH;

          (2)若∠CFD=120°,求證:DHG為等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖, ON 平分∠AOC,OM平分∠BOC

          (1)∠AOB=90°∠AOC=50°,則∠MON= °;

          (2)∠AOB=80°∠AOC=60°,則∠MON= °;

          (3)探索:∠MON與∠AOB有何關(guān)系?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

          (1)求證:△BAD≌△CAE;

          (2)請判斷BD、CE有何大小、位置關(guān)系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,菱形ABCD中,AB=10cm,BD=12cm,對角線AC與BD相交于點(diǎn)O,直線MN以1cm/s從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過程中始終保持MN⊥BD,垂足是點(diǎn)P,過點(diǎn)P作PQ⊥BC,交BC于點(diǎn)Q.(0<t<6)
          (1)求線段PQ的長;(用含t的代數(shù)式表示)
          (2)設(shè)△MQP的面積為y(單位:cm2),求y與t的函數(shù)關(guān)系式;
          (3)是否存在某時(shí)刻t,使線段MQ恰好經(jīng)過點(diǎn)O?若存在求出此時(shí)t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】李老師給愛好學(xué)習(xí)的小兵和小鵬提出這樣一個(gè)問題:如圖1,在ABC中,AB=AC點(diǎn)P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CFAB,垂足為F.求證:PD+PE=CF.

          小兵的證明思路是:如圖2,連接AP,由ABP與ACP面積之和等于ABC的面積可以證得:PD+PE=CF.

          小鵬的證明思路是:如圖2,過點(diǎn)P作PGCF,垂足為G,先證△GPC≌△ECP,可得:PE=CG,而PD=GF,則PD+PE=CF.

          請運(yùn)用上述中所證明的結(jié)論和證明思路完成下列兩題:

          (1)如圖3,將長方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值;

          (2)如圖4,P是邊長為6的等邊三角形ABC內(nèi)任一點(diǎn),且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解方程
          (1)解方程組:
          (2)已知關(guān)于x的一元二次方程x2+2x﹣m=1有實(shí)數(shù)根,求m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

          (1)在圖中畫出△ABC與關(guān)于y軸對稱的圖形△A1B1C1,并寫出頂點(diǎn)A1、B1、C1的坐標(biāo);

          (2)若將線段A1C1平移后得到線段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是( 。

          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案