日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角坐標系中,正方形ABOD的邊長為a,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上.盲線OE的解析式為y=2x,直線CF過x軸上一點C(-a,0)且與OE平行.現(xiàn)正方形以每秒的速度勻速沿x軸正方向平行移動,設運動時間為t秒,正方形被夾在直線OE和CF間的部分的面積為S.

          (1)當0≤t<4時,寫出S與t的函數(shù)關系;

          (2)當4≤t≤5時,寫出S與t的函數(shù)關系,在這個范圍內(nèi)S有無最大值?若有請求出最大值,若沒有請說明理由.

          答案:
          解析:

            (1)當0≤t<4時,如圖:

            由圖可知OM=t,設經(jīng)過t秒后,正方形移動到A1B1MN,∵當t=4時,BB1=OM=×4=a,∴點B1在C點左側(cè).

            ∴夾在兩平行線間的部分是多邊形COQNG,其面積為:平行四邊形COPG-△NPQ的面積.

            ∵CO=a,OD=a,∴四邊形COPG面積=a2,又∵點P的縱坐標為a,代入y=2x得P,∴DP=

            ∴NP=t,由y=2x知,NQ=2NP,∴△NPQ面積=·NP·NQ=

            ∴S=a2=(5-t)2=[60-(5-t)2].

            (2)當4≤t≤5時,如圖:

            這時正方形移動到A1B1MN,∵當4≤t≤5時,a≤BB1,點B1在C、O點之間.

            ∴夾在兩平行線間的部分是B1OQNGR,即平行四邊形COPG被切掉了兩個小三角形△NPQ和△CB1R,其面積為:平行四邊形COPG-△NPQ的面積-△CB1R的面積.

            與(1)同理,OM=t,NP=,S△NPQ=,∵CO=a,CM=,B1M=a,∴CB1=CM-B1M=-a=,∴S=CB1·B1R=(CB1)2=

            ∴S=a2=[(5-t)2+(t-4)2]=(2t2-18t+41)=a2[2·+].

            ∴當t=時,S有最大值,S最大=


          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
          (24,0)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
          (1)在圖中畫出線段OP′;
          (2)求P′的坐標和
          PP′
          的長度.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
          6
          x
          的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
          3
          2
          倍.
          (1)求點A的坐標;
          (2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
          (3)點D在反比例函數(shù)y=
          6
          x
          的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
          (1)以原點O為位似中心;
          (2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

          (1)△AOB的面積是
          6
          6
          ;
          (2)三角形(2013)的直角頂點的坐標是
          (8052,0)
          (8052,0)

          查看答案和解析>>

          同步練習冊答案