日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,二次函數(shù) (a 0) x 軸交于 A、C 兩點(diǎn),與 y 軸交于點(diǎn) B,P 拋物線的頂點(diǎn),連接 AB,已知 OAOC=1:3.

          1)求 A、C 兩點(diǎn)坐標(biāo);

          2)過點(diǎn) B BD∥x 軸交拋物線于 D,過點(diǎn) P PE∥AB x 軸于 E,連接 DE,

          E 坐標(biāo);

          tan∠BPM=,求拋物線的解析式.

          【答案】1A-10),C30);(2① E-0);原函數(shù)解析式為:

          【解析】

          (1)由二次函數(shù)的解析式可求出對稱軸為x=1,過點(diǎn)PPEx軸于點(diǎn)E,所以設(shè)A-m,0),C3m0),結(jié)合對稱軸即可求出結(jié)果;

          (2) ①過點(diǎn)PPMx軸于點(diǎn)M,連接PE,DE,先證明△ABO△EPM得到,找出OE=,再根據(jù)A-1,0)代入解析式得:3a+c=0,c=-3a,即可求出OE的長,則坐標(biāo)即可找到;

          設(shè)PMBD于點(diǎn)N;根據(jù)點(diǎn)P1,c-a),BNAC,PMx軸表示出PN=-a,再由tan∠BPM=求出a,結(jié)合(1)知道c,即可知道函數(shù)解析式.

          1)∵二次函數(shù)為:(a<0)

          ∴對稱軸為,

          過點(diǎn)PPMx軸于點(diǎn)M

          M1,0),MAC中點(diǎn),

          OAOC=13,

          設(shè)A-m,0),C3m,0),

          解得:m=1,

          A-1,0),C30),

          2)①做圖如下:

          PE∥AB,

          ∠BAO=∠PEM,

          ∠AOB=∠EMP,

          △ABO△EPM

          ,

          由(1)知:A-1,0),C3,0),M1,0),B0,c),P1,c-a),

          OE=,

          A-1,0)代入解析式得:3a+c=0,

          c=-3a

          ,

          E-0);

          設(shè)PMBD于點(diǎn)N;

          (a<0),

          x=1時(shí),y=c-a,即點(diǎn)P1,c-a),

          BNAC,PMx

          NM= BO=c,BN=OM=1,

          PN=-a,

          tan∠BPM=,

          tan∠BPM=,

          PN=,

          a=-,

          由(1)知c=-3a,

          c=

          ∴原函數(shù)解析式為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D,過點(diǎn)DDEAC于點(diǎn)E

          1)求證:DE是⊙O的切線.

          2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形的邊長為,點(diǎn)為正方形的中心,點(diǎn)邊上一動(dòng)點(diǎn),直線于點(diǎn),過點(diǎn),垂足為點(diǎn),連接,則的最小值為(

          A.2B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)證明推斷:如圖①,在ABC中,D,E分別是邊BC,AB的中點(diǎn),ADCE相交于點(diǎn)G,求證:

          2)類比探究:如圖②,在正方形ABCD中,對角線AC、BD交于點(diǎn)O,E為邊BC的中點(diǎn),AE、BD交于點(diǎn)F,若AB6,求OF的長;

          3)拓展運(yùn)用:若正方形ABCD變?yōu)?/span>ABCD,如圖③,連結(jié)DEAC于點(diǎn)G,若四邊形OFEG的面積為,求ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)劃開設(shè)以下課外活動(dòng)項(xiàng)目:A 一版畫、B 一機(jī)器人、C 一航模、D 一園藝種植.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每位學(xué)生 必須選且只能選一個(gè)項(xiàng)目),并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:

          1)這次被調(diào)查的學(xué)生共有 人;扇形統(tǒng)計(jì)圖中,選“D一園藝種植的學(xué)生人數(shù)所占圓心角的度數(shù)是 °;

          2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

          3)若該校學(xué)生總數(shù)為 1500 人,試估計(jì)該校學(xué)生中最喜歡機(jī)器人和最喜歡航模項(xiàng)目的總 人數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)A(1,1)關(guān)于直線y =kx的對稱點(diǎn)恰好落在x軸的正半軸上,則k的值是(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+c經(jīng)過點(diǎn)A02)和點(diǎn)B-1,0).

          1)求此拋物線的解析式;

          2)將此拋物線平移,使其頂點(diǎn)坐標(biāo)為(2,1),平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左邊),求點(diǎn)C,D的坐標(biāo);

          3)將此拋物線平移,設(shè)其頂點(diǎn)的縱坐標(biāo)為m,平移后的拋物線與x軸兩個(gè)交點(diǎn)之間的距離為n,若1m3,直接寫出n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本,已知:兩種筆記本的進(jìn)價(jià)之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學(xué)買4本甲種筆記本和3本乙種筆記本共用了47元.

          (1)甲、乙兩種筆記本的進(jìn)價(jià)分別是多少元?

          (2)該文具店購入這兩種筆記本共60本,花費(fèi)不超過296元,則購買甲種筆記本多少本時(shí)文具店獲利最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知平面直角坐標(biāo)系,兩點(diǎn)的坐標(biāo)分別為

          1)若軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),的周長最短;

          2)若軸上的兩個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),四邊形的周長最短;

          3)設(shè)分別為軸和軸上的動(dòng)點(diǎn),請問:是否存在這樣的點(diǎn), 使四邊形的周長最短?若存在,請求出,_________,________(不必寫解答過程);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案