日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線yx+4x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點POA上一動點,當(dāng)PC+PD的值最小時,點P的坐標(biāo)為( 。

          A.(﹣1,0B.(﹣2,0C.(﹣30D.(﹣4,0

          【答案】B

          【解析】

          根據(jù)一次函數(shù)解析式求出點A、B的坐標(biāo),再由中點坐標(biāo)公式求出點C、D的坐標(biāo),根據(jù)對稱的性質(zhì)找出點D′的坐標(biāo),結(jié)合點C、D′的坐標(biāo)求出直線CD′的解析式,令y=0即可求出x的值,從而得出點P的坐標(biāo).

          作點D關(guān)于x軸的對稱點D,連接CDx軸于點P,此時PC+PD值最小,如圖.

          yx+4x0,則y4

          ∴點B的坐標(biāo)為(0,4);

          yx+4y0,則x+40,解得:x=﹣8,

          ∴點A的坐標(biāo)為(﹣8,0).

          ∵點C、D分別為線段AB、OB的中點,

          ∴點C(﹣4,2),點D02).

          ∵點D和點D關(guān)于x軸對稱,

          ∴點D的坐標(biāo)為(0,﹣2).

          設(shè)直線CD的解析式為ykx+b

          ∵直線CD過點C(﹣4,2),D0,﹣2),

          ,解得:,

          ∴直線CD的解析式為y=﹣x2

          y0,則0=﹣x2,解得:x=﹣2,

          ∴點P的坐標(biāo)為(﹣2,0).

          故選:B

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2x軸交于A,B兩點,交y軸于點C,點C關(guān)于拋物線對稱軸對稱的點為D.

          (1)求點D的坐標(biāo)及直線AD的解析式;

          (2)如圖1,連接CD、AD、BD,點M為線段CD上一動點,過MMNBD交線段ADN點,點Py軸上的動點,當(dāng)△CMN的面積最大時,求△MPN的周長取得最小值時點P的坐標(biāo);

          (3)如圖2,線段AE在第一象限內(nèi)交BD于點E,其中tanEAB=,將拋物線向右水平移動,點A平移后的對應(yīng)點為點G;將△ABD繞點B逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀(jì)為△A1BD1,若射線BD1與線段AE的交點為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個三角形,是否存在點G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠C=90°,AB=10,cosB=,點MAB邊的中點,將ABC繞著點M旋轉(zhuǎn),使點C與點A重合,點A與點D重合,點B與點E重合,得到DEA,且AECB于點P,那么線段CP的長是__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,在平面直角坐標(biāo)系中,點,,過點作直線軸互相垂直,軸上的一個動點,且.

          (1)如圖1,若點是第二象限內(nèi)的一個點,且時,求點的坐標(biāo);(用的代數(shù)式表示)

          (2)如圖2,若點是第三象限內(nèi)的一個點,設(shè)點的坐標(biāo),求的取值范圍:

          (3)如圖3,連接,作的平分線,點、分別是射線與邊上的兩個動點,連接、,當(dāng)時,試求的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達(dá)B處此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向。為了在臺風(fēng)到來之前用最短時間到達(dá)M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行多少小時即可到達(dá)? (結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問水深、葭長各幾何譯文大意是:如圖,有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點,它的頂端恰好到達(dá)池邊的水面.問水的深度與這根蘆葦?shù)拈L度分別是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,以ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.

          (1)猜想BGEG的數(shù)量關(guān)系.并說明理由;

          (2)延長DE,BA交于點H,其他條件不變,

          ①如圖2,若∠ADC=60°,求的值;

          ②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.

          (1)當(dāng)CM:CB=1:4時,求CF的長.

          (2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.

          (3)當(dāng)△ABM∽△EFN時,求CM的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店一周內(nèi)甲、乙兩種計算器每天的銷售量如下(單位:個):

          類別/星期

          平均數(shù)

          (1)將表格填寫完整.

          (2)求甲種計算器本周銷售量的方差.

          (3)已知乙種計算器本周銷售量的方差為,本周哪種計算器的銷售量比較穩(wěn)定?說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案