日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知平面直角坐標(biāo)系中三個(gè)點(diǎn)A(-8,0)、B(2,0)、C,O為坐標(biāo)原點(diǎn).以AB為直徑的⊙M與y軸的負(fù)半軸交于點(diǎn)D.
          (1)求直線(xiàn)CD的解析式;
          (2)求證:直線(xiàn)CD是⊙M的切線(xiàn);
          (3)過(guò)點(diǎn)A作AE⊥CD,垂足為E,且AE與⊙M相交于點(diǎn)F,求一個(gè)一元二次方程,使它的兩個(gè)根分別是AE和AF.

          【答案】分析:(1)已知A、B的坐標(biāo)就可以求出直徑AB的長(zhǎng),弦心距MB的長(zhǎng),根據(jù)垂徑定理就可以求出BD的長(zhǎng),即得到D的坐標(biāo).根據(jù)待定系數(shù)法就可以求出CD的解析式.
          (2)連接MD,根據(jù)M,C,D的坐標(biāo)就可以得△CDM的三邊的長(zhǎng),根據(jù)勾股定理的逆定理證明三角形是直角三角形.
          (3)易證△CDM∽△CEA,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,可以求出AE,再證明Rt△CDM∽R(shí)t△BFA,就可以得到AF,則所求的一元二次方程就可以得到.
          解答:(1)解:∵A(-8,0),B(2,0),
          ∴⊙M的圓心為(-3,0),且⊙M的半徑為5.
          連接MD.
          在Rt△OMD中,
          OD==4,
          ∴D(0,-4).  (2分)
          設(shè)所求直線(xiàn)CD的解析式為y=kx+b,則由C(,0)、D(0,-4)兩點(diǎn),
          ,
          解得
          故所求直線(xiàn)CD的解析式為y=x-4. (4分)

          (2)證明:在Rt△CDO中,CD2=OD2+OC2=42+(2=
          在△CDM中,MC=3+,DM=5,
          ∴DM2+CD2=25+
          ,
          ∴MD2+CD2=MC2
          ∴△CDM是直角三角形,且
          ∠MDC=90°,CD經(jīng)過(guò)半徑MD的外端點(diǎn)D,
          ∴直線(xiàn)CD是⊙M的切線(xiàn).  (6分)

          (3)解:由已知,AE⊥CD,由(2),MD⊥CD,
          ∴MD∥AE,
          ∴△CDM∽△CEA.
          ,即,解得AE=8.(7分)
          連接BF.則∠AFB=90°.
          又∠MDC=90°,∠CMD=∠CAE,
          ∴Rt△CDM∽R(shí)t△BFA.
          ,即,解得AF=6.
          故所求的一個(gè)一元二次方程是x2-14x+48=0.(9分)
          點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,以及相似三角形的性質(zhì),相似三角形的對(duì)應(yīng)邊的比相等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

          與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

          標(biāo)為2,

          (1)求一次函數(shù)和反比例函數(shù)的解析式;

          (2)直接寫(xiě)出時(shí)x的取值范圍。

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013屆安徽滁州八年級(jí)下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

          已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐

          標(biāo)分別為(6,0),(0,2).點(diǎn)D是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過(guò)點(diǎn)D作直線(xiàn)=-交折線(xiàn)O-A-B于點(diǎn)E.

          (1)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

          (2)如圖2,當(dāng)點(diǎn)E在線(xiàn)段OA上時(shí),矩形OABC關(guān)于直線(xiàn)DE對(duì)稱(chēng)的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

          (3)問(wèn)題(2)中的四邊形DMEN中,ME的長(zhǎng)為_(kāi)___________.

              

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案