日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當(dāng)P運動到C點時,P、Q都停止運動.設(shè)點P運動的時間為ts.

          (1)當(dāng)P異于A.C時,請說明PQ∥BC;

          (2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

          考點:直線與圓的位置關(guān)系;等邊三角形的判定與性質(zhì);菱形的性質(zhì);切線的性質(zhì);相似三角形的判定與性質(zhì)。

          專題:幾何綜合題。

          分析:(1)連接BD交AC于O,構(gòu)建直角三角形AOB.利用菱形的對角線互相垂直、對角線平分對角、鄰邊相等的性質(zhì)推知△PAQ∽△CAB;然后根據(jù)“相似三角形的對應(yīng)角相等”證得∠APQ=∠ACB;最后根據(jù)平行線的判定定理“同位角相等,兩直線平行”可以證得結(jié)論;

          (2)如圖2,⊙P與BC切于點M,連接PM,構(gòu)建Rt△CPM,在Rt△CPM利用特殊角的三角函數(shù)值求得PM=PC=,然后根據(jù)PM=PQ=AQ=t列出關(guān)于t的方程,通過解方程即可求得t的值;

          如圖3,⊙P過點B,此時PQ=PB,根據(jù)等邊三角形的判定可以推知△PQB為等邊三角形,然后由等邊三角形的性質(zhì)以及(2)中求得t的值來確定此時t的取值范圍;

          如圖4,⊙P過點C,此時PC=PQ,據(jù)此等量關(guān)系列出關(guān)于t的方程,通過解方程求得t的值.

          解答:解:(1)∵四邊形ABCD是菱形,且菱形ABCD的邊長為2cm,

          ∴AB=BC=2,∠BAC=∠DAB,

          又∵∠DAB=60°(已知),

          ∴∠BAC=∠BCA=30°;

          如圖1,連接BD交AC于O.

          ∵四邊形ABCD是菱形,

          ∴AC⊥BD,OA=AC,

          ∴OB=AB=1(30°角所對的直角邊是斜邊的一半),

          ∴OA=,AC=2OA=2,

          運動ts后,,

          又∵∠PAQ=∠CAB,

          ∴△PAQ∽△CAB,

          ∴∠APQ=∠ACB(相似三角形的對應(yīng)角相等),

          ∴PQ∥BC(同位角相等,兩直線平行)…5分

          (2)如圖2,⊙P與BC切于點M,連接PM,則PM⊥BC.

          在Rt△CPM中,∵∠PCM=30°,∴PM=PC=

          由PM=PQ=AQ=t,即=t

          解得t=4﹣6,此時⊙P與邊BC有一個公共點;

          如圖3,⊙P過點B,此時PQ=PB,

          ∵∠PQB=∠PAQ+∠APQ=60°

          ∴△PQB為等邊三角形,∴QB=PQ=AQ=t,∴t=1

          時,⊙P與邊BC有2個公共點.

          如圖4,⊙P過點C,此時PC=PQ,即2t=t,∴t=3﹣

          當(dāng)1≤t≤3﹣時,⊙P與邊BC有一個公共點,

          當(dāng)點P運動到點C,即t=2時,⊙P過點B,此時,⊙P與邊BC有一個公共點,

          ∴當(dāng)t=4﹣6或1<t≤3﹣或t=2時,⊙P與菱形ABCD的邊BC有1個公共點;

          當(dāng)4﹣6<t≤1時,⊙P與邊BC有2個公共點.

          點評:本題綜合考查了菱形的性質(zhì)、直線與圓的位置關(guān)系以及相似三角形的判定等性質(zhì).解答(2)題時,根據(jù)⊙P的運動過程來確定t的值,以防漏解.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,菱形ABCD的邊長為2,∠ABC=45°,則點D的坐標(biāo)為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結(jié)論正確的是(  )
          A、sinα=
          4
          5
          B、cosα=
          3
          5
          C、tanα=
          4
          3
          D、tanα=
          3
          4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,菱形ABCD的邊長為6且∠DAB=60°,以點A為原點、邊AB所在的直線為x軸且頂點D在第一象限建立平面直角坐標(biāo)系.動點P從點D出發(fā)沿折線DCB向終點B以2單位/每秒的速度運動,同時動點Q從點A出發(fā)沿x軸負(fù)半軸以1單位/秒的速度運動,當(dāng)點P到達終點時停止運動,運動時間為t,直線PQ交邊AD于點E.
          (1)求出經(jīng)過A、D、C三點的拋物線解析式;
          (2)是否存在時刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
          (3)設(shè)AE長為y,試求y與t之間的函數(shù)關(guān)系式;
          (4)若F、G為DC邊上兩點,且點DF=FG=1,試在對角線DB上找一點M、拋物線ADC對稱軸上找一點N,使得四邊形FMNG周長最小并求出周長最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時從A點出發(fā),點P以1cm/秒的速度沿A→C→B的方向運動,點Q以2cm/秒的速度沿A→B→C→D的方向運動.當(dāng)點Q運動到D點時,P、Q兩點同時停止運動.設(shè)P、Q運動的時間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點和線段是面積為0的三角形).
          (1)當(dāng)x=
          8
          8
          秒時,P和Q相遇;
          (2)當(dāng)x=
          (12-4
          3
          (12-4
          3
          秒時,△APQ是等腰直角三角形;
          (3)當(dāng)x=
          32
          3
          32
          3
          秒時,△APQ是等邊三角形;
          (4)求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點O,求BD及AC的長.

          查看答案和解析>>

          同步練習(xí)冊答案