【題目】已知:在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點D在線段BC上時,請直接寫出線段BD與CF的數(shù)量關(guān)系: ;
(2)如圖2,當(dāng)點D在線段BC的延長線上時,其它條件不變,若AC=2,CD=1,則CF= ;
(3)如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A、F分別在直線BC的兩側(cè),其它條件不變:
①請直接寫出CF、BC、CD三條線段之間的關(guān)系: ;
②若連接正方形對角線AE、DF,交點為O,連接OC,探究△AOC的形狀,并說明理由.
【答案】(1)BD=CF;(2);(3)①CD=CF+BC,②等腰三角形,見解析
【解析】
(1)△ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF;
(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF=CD+BC,然后求出答案;
(3)中的①與(1)相同,可證明BD=CF,又點D、B、C共線,故:CD=BC+CF;
②由(1)猜想并證明BD⊥CF,從而可知△FCD為直角三角形,再由正方形的對角線的性質(zhì)判定△AOC三邊的特點,再進一步判定其形狀.
解:(1)證明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
(2)與(1)同理,證△BAD≌△CAF;
∴BD=CF,
∴CF=BC+CD,
∵AC=AB=2,CD=1,
∴,
∴CF=;
(3)①BC、CD與CF的關(guān)系:CD=BC+CF
理由:與(1)同法可證△BAD≌△CAF,從而可得:
BD=CF,
即:CD=BC+CF
②△AOC是等腰三角形
理由:與(1)同法可證△BAD≌△CAF,可得:∠DBA=∠FCA,
又∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
則∠ABD=180°-45°=135°,
∴∠ABD=∠FCA=135°
∴∠DCF=135°-45°=90°
∴△FCD為直角三角形.
又∵四邊形ADEF是正方形,對角線AE與DF相交于點O,
∴OC=DF,
∴OC=OA
∴△AOC是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,BG的延長線交AC于點E,F為AB上的一點,CF與AD垂直,交AD于點H,則下面判斷正確的有( 。
①AD是△ABE的角平分線;②BE是△ABD的邊AD上的中線;
③CH是△ACD的邊AD上的高;④AH是△ACF的角平分線和高
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,任意一個正整數(shù)都可以進行這樣的分解:
(
是正整數(shù),且
),在
的所有這種分解中,如果
兩因數(shù)之差的絕對值最小,我們就稱
是
的最佳分解,產(chǎn)規(guī)定:
,例如:12可以分解成
,
,
,因為
,所以
是12的最佳分解,所以
.
(1)求;
(2)若正整數(shù)是4的倍數(shù),我們稱正整數(shù)
為“四季數(shù)”,如果一個兩位正整數(shù)
,
(
,
為自然數(shù)),交換個位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來的兩位正整數(shù)所得的差為“四季數(shù)”,那么我們稱這個數(shù)
為“有緣數(shù)”,求所有“有緣數(shù)”中
的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與
軸相交于O、A兩點(其中O為坐標原點),過點P(2,2a)作直線PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(其中B、C不重合),連接AP交y軸于點N,連接BC和PC.
(1)時,求拋物線的解析式和BC的長;
(2)如圖時,若AP⊥PC,求
的值;
(3)是否存在實數(shù),使
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因魔幻等與眾不同的城市特質(zhì),以及抖音等新媒體的傳播,重慶已成為國內(nèi)外游客最喜歡的旅游目的地城市之一.著名“網(wǎng)紅打卡地”磁器口在2018年五一長假期間,接待游客達20萬人次,預(yù)計在2020年五一長假期間,接待游客將達28.8萬人次.在磁器口老街,美食無數(shù),一家特色小面店希望在五一長假期間獲得好的收益,經(jīng)測算知,該小面成本價為每碗6元,借鑒以往經(jīng)驗:若每碗賣25元,平均每天將銷售300碗,若價格每降低1元,則平均每天多銷售30碗.
(1)求出2018至2020年五一長假期間游客人次的年平均增長率;
(2)為了更好地維護重慶城市形象,店家規(guī)定每碗售價不得超過20元,則當(dāng)每碗售價定為多少元時,店家才能實現(xiàn)每天利潤6300元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,
,試問
與
平行嗎?為什么?
下面是說明的過程,請在( )內(nèi)寫上理由.
解:,
( )
( )
又,
(等量代換)
( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com