日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線y=ax2+bx-3經(jīng)過(guò)A(-1,0),B(3,0)兩點(diǎn).
          (1)求拋物線的解析式;
          (2)如圖1,點(diǎn)D在x軸負(fù)半軸上,若點(diǎn)D關(guān)于直線AC的對(duì)稱點(diǎn)E恰好在拋物線上,求點(diǎn)E的坐標(biāo);
          (3)如圖2,將拋物線的頂點(diǎn)平移至原點(diǎn),點(diǎn)R為y軸正半軸上一點(diǎn),過(guò)R作不平行x軸的直線交拋物線于P、Q兩點(diǎn),問(wèn)是否存在點(diǎn)R使△OPQ的外心在PQ邊上?若存在,求點(diǎn)R的坐標(biāo)?若不存在,請(qǐng)說(shuō)明理由.
          分析:(1)將A、B兩點(diǎn)的坐標(biāo)代入拋物線的解析式中,通過(guò)解方程組即可求出待定系數(shù)的值.
          (2)設(shè)直線DE和直線AC的交點(diǎn)為F,顯然Rt△ADF和Rt△ACO相似,即∠ADF和∠ACO的正切、正弦、余弦值都相同,設(shè)AD=x,可由x表達(dá)出AF、DF的長(zhǎng),過(guò)E作EG⊥x軸于G,由于DE關(guān)于直線AC對(duì)稱,那么DE=2DF,然后根據(jù)∠ADE的三角函數(shù)值求出DG、EG的長(zhǎng),由此得出點(diǎn)E的坐標(biāo)表達(dá)式,再代入拋物線的解析式中即可確定點(diǎn)E的坐標(biāo).
          (3)拋物線在平移過(guò)程中,開(kāi)口方向和大小不變,即二次項(xiàng)系數(shù)不變,可據(jù)此求出平移后的函數(shù)解析式,分別過(guò)P、Q作x軸的垂線,設(shè)垂足為M、N,首先根據(jù)拋物線的解析式設(shè)出P、Q兩點(diǎn)的坐標(biāo),若△OPQ的外心在PQ邊上,那么△POQ必為直角三角形,且∠POQ為直角,由此得出的結(jié)論為Rt△PMO、Rt△ONQ相似,根據(jù)對(duì)應(yīng)的直角邊成比例可求出P、Q兩點(diǎn)橫、縱坐標(biāo)的數(shù)量關(guān)系,利用待定系數(shù)法求出直線PQ的解析式后結(jié)合這個(gè)數(shù)量關(guān)系即可求出點(diǎn)R的坐標(biāo).
          解答:解:(1)將A(-1,0),B(3,0)代入y=ax2+bx-3中,得:
          a-b-3=0
          9a+3b-3=0

          解得
          a=1
          b=-2

          故拋物線的解析式:y=x2-2x-3.

          (2)設(shè)直線AC與直線DE的交點(diǎn)為F,由題意知:DE⊥AF,且DE=2DF=2EF;
          ∵∠DAF=∠CAO,∴∠FDA=∠OCA;
          在Rt△OAC中,OA=1、OC=3,則:AC=
          10

          ∴sin∠FDA=sin∠OCA=
          10
          10
          ,cos∠FDA=cos∠OCA=
          3
          10
          10
          ,tan∠FDA=tan∠OCA=
          1
          3

          設(shè)AD=x,則:AF=AD•sin∠ADF=
          10
          10
          x,DF=AD•cos∠ADF=
          3
          10
          10
          x,DE=2DF=
          3
          10
          5
          x;
          過(guò)點(diǎn)E作EG⊥x軸于G,如右圖1;
          在Rt△DEG中,EG=DE•sin∠ADF=
          3
          10
          5
          x•
          10
          10
          =
          3
          5
          x,DG=DE•cos∠ADF=
          3
          10
          5
          x•
          3
          10
          10
          =
          9
          5
          x,
          OG=DG-OD=
          9
          5
          x-(x+1)=
          4
          5
          x-1;
          則:E(
          4
          5
          x-1,
          3
          5
          x),代入y=x2-2x-3=(x+1)(x-3)中,得:
          4
          5
          x(
          4
          5
          x-4)=
          3
          5
          x,解得:x1=0(舍)、x2=
          95
          16

          ∴E(
          15
          4
          ,
          57
          16
          ).

          (3)由題意可知,平移后的拋物線解析式為:y=x2;
          分別過(guò)P、Q作PM⊥x軸于M、QN⊥x軸于N,設(shè)P(-m,m2)、Q(n,n2),(m、n>0),如右圖2;
          若△OPQ的外心在PQ上,則△OPQ為直角三角形,且∠POQ為直角;
          ∴∠POM=∠OPN=90°-∠QON,
          又∵∠PMO=∠ONQ=90°,∴△POM∽△OPN;
          PM
          ON
          =
          OM
          QN
          ,即:
          m2
          n
          =
          m
          n2
          ,得:mn=1;
          設(shè)直線PQ的解析式:y=kx+b,代入P、Q點(diǎn)的坐標(biāo),有:
          -mk+b=m2…①
          nk+b=n2…②

          ①×n+②×m,得:
          (m+n)b=mn(m+n),即:b=mn=1;
          ∴R(0,1);
          綜上,存在符合條件的R點(diǎn),且坐標(biāo)為(0,1).
          點(diǎn)評(píng):這道題綜合考查了二次函數(shù)、函數(shù)圖象的平移規(guī)律、解直角三角形、軸對(duì)稱圖形的性質(zhì)、直角三角形的外心位置以及相似三角形的應(yīng)用等重要知識(shí);(2)題需要找出關(guān)鍵銳角的三角函數(shù)值;最后一題的難度較大,通過(guò)構(gòu)建相似三角形得到P、Q兩點(diǎn)橫、縱坐標(biāo)的數(shù)量關(guān)系尤為重要.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
          1
          2
          ,
          9
          8
          ),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
          (1)求a值;
          (2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
          (3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
          (1)求A,B兩點(diǎn)的坐標(biāo);
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
          (1)求該拋物線的對(duì)稱軸;
          (2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
          (3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
          (1)求該拋物線的解析式;
          (2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
          (3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問(wèn):是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案