日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題12分)如圖,拋物線y=ax2bxcx軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)。點C是點A關于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行。直線y=-xm過點C,交y軸于D點.
          ⑴求拋物線的函數(shù)表達式;
          ⑵點K為線段AB上一動點,過點Kx軸的垂線與直線CD交于點H,與拋物線交于     點G,求線段HG長度的最大值;
          ⑶在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.
          解:(1)設拋物線的函數(shù)表達式為y=a(x-1)(x+3)

          ∵拋物線交y軸于點E(0,-3),將該點坐標代入上式,得a=1
          ∴所求函數(shù)表達式為y=(x-1)(x+3),
          即y=x2+2x-3;
          (2)∵點C是點A關于點B的對稱點,點A坐標(-3,0),點B坐標(1,0),
          ∴點C坐標(5,0),
          ∴將點C坐標代入y=-x+m,得m=5,
          ∴直線CD的函數(shù)表達式為y=-x+5,
          設K點的坐標為(t,0),則H點的坐標為(t,-t+5),G點的坐標為(t,t2+2t-3),
          ∵點K為線段AB上一動點,
          ∴-3≤t≤1,
          ∴HG=(-t+5)-(t2+2t-3)=-t2-3t+8=-(t+ )2+ ,
          ∵-3<- <1,
          ∴當t="-" 時,線段HG的長度有最大值;
          (3)∵點F是線段BC的重點,點B(1,0),點C(5,0),
          ∴點F的坐標為(3,0),
          ∵直線l過點F且與y軸平行,
          ∴直線l的函數(shù)表達式為x=3,
          ∵點M在直線l上,點N在拋物線上,
          ∴設點M的坐標為(3,m),點N的坐標為(n,n2+2n-3),
          ∵點A(-3,0),點C(5,0),
          ∴AC=8,
          分情況討論:
          ①若線段AC是以點A、C,M、N為頂點的平行四邊形的邊,則需MN∥AC,且MN=AC=8.
          當點N在點M的左側時,MN=3-n,
          ∴3-n=8,解得n=-5,
          ∴N點的坐標為(-5,12),
          當點N在點M的右側時,MN=n-3,
          ∴n-3=8,
          解得n=11,
          ∴N點的坐標為(11,140),
          ②若線段AC是以點A、C,M、N為頂點的平行四邊形的對角線,由“點C與點A關于點B中心對稱”知:點M與點N關于點B中心對稱,取點F關于點B的對稱點P,則P點坐標為(-1,0)
          過P點作NP⊥x軸,交拋物線于點N,
          將x=-1代入y=x2+2x-3,得y=-4,
          過點N,B作直線NB交直線l于點M,
          在△BPN和△BFM中,
          ∠NBP=∠MBF,
          BF=BP,
          ∠BPN=∠BFM=90°,
          ∴△BPN≌△BFM,
          ∴NB=MB,
          ∴四邊形ANCM為平行四邊形,
          ∴坐標(-1,-4)的點N符合條件,
          ∴當N的坐標為(-5,12),(11,140),(-1,-4)時,以點A、C、M、N為頂點的四邊形為平行四邊形.解析:
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點y軸上,,B點坐標為(4,0).點是邊上一點,且.點、分別從、同時出發(fā),以1厘米/秒的速度分別沿、向點運動(當點F運動到點B時,點E隨之停止運動),EM、CD的延長線交于點P,F(xiàn)PAD于點Q.⊙E半徑為,設運動時間為秒。

          (1)求直線BC的解析式。

          (2)當為何值時,

          (3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點的坐標。如果不相切,說明理由。

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

           

          (本題12分)如圖,點O是等邊△ABC內一點,D是△ABC外的一點, ∠AOB= 110°,

          ∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。

          (1)求證:△OCD是等邊三角形;

          (2)當=150°時,試判斷△AOD 的形狀,并說明理由;

          (3)探究:當為多少度時,△AOD是等腰三角形。

           

           

           

           

           

           

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點,逆時針旋轉三角尺.

          (1)當三角尺的一邊經(jīng)過C點時,此時三角尺的另一邊和AB邊交于點,求此時直線PM的解析式;

          (2)繼續(xù)旋轉三角尺,三角尺的一邊與x軸交于點G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點F,若三角形GF的面積為4,求此時直線PM的解析式;

          (3)當旋轉到三角尺的一邊經(jīng)過點B,另一直角邊的延長線與x軸交于點G,,求此時三角形GOF的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011-2012學年人教版九年級第一學期期末考試數(shù)學卷 題型:解答題

          (本題12分)如圖,已知拋物線y=x2+3與x軸交于點A、B,與直線y=x+b相交于點B、C,直線y=x+b與y軸交于點E.
          (1)寫出直線BC的解析式;
          (2)求△ABC的面積;
          (3)若點M在線段AB上以每秒1個單位長度的速度從A向B運動(不與A、B重合),同時,點N在射線BC上以每秒2個單位長度的速度從B向C運動。設運動時間為t秒,請寫出△MNB的面積s與t的函數(shù)關系式,并求出點M運動多少時間時,△MNB的面積最大,最大面積是多少?

          查看答案和解析>>