日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在?ABCD中,∠BCD的平分線交直線AD于點(diǎn)F,∠BAD的平分線交DC延長線于E.
          (1)在圖1中,證明AF=EC;
          (2)若∠BAD=90°,G為CF的中點(diǎn)(如圖2),判斷△BEG的形狀,并證明.
          分析:(1)求出CF∥AE,得出梯形AFCE,推出∠E=∠3=∠4,得出等腰梯形即可;
          (2)證△AFG≌△ECG,推出AG=EG,AG=EG=BG,∠EGC=∠AGF,∠GAF=∠GEC,求出BG=AG,和求出∠EGC+∠BGF=90°,即可得出答案.
          解答:(1)證明:∵四邊形ABCD是平行四邊形,
          ∴BC∥AD,∠BAD=∠BCD,
          ∵∠BCD的平分線CF,∠BAD的平分線AM,
          ∴∠4=
          1
          2
          ∠BAD,∠2=∠3=
          1
          2
          ∠BCD,
          ∴∠2=∠3=∠4,
          ∵BC∥AD,
          ∴∠1=∠4,
          ∴∠1=∠2,
          ∴AM∥CF,
          即AE∥CF,AE≠CF,
          ∴四邊形AECF是梯形,
          ∵AM∥CF,
          ∴∠3=∠E=∠4,
          ∴梯形AECF是等腰梯形,
          ∴AF=CE;
           (2)△BEG是等腰直角三角形,
          證明:連接AG,過G作GN∥BC交AB于N,
          ∵四邊形ABCD是矩形,
          ∴BC∥AD,∠CBN=90°,
          ∴∠GNB=90°,BC∥GN∥AD,
          ∵G為CF的中點(diǎn),
          ∴N為AB中點(diǎn),
          即NG是AB的垂直平分線,
          ∴BG=AG,
          ∴∠BGN=∠AGN,
          ∵NG∥AD,
          ∴∠AGN=∠GAF=∠BGN,
          ∵CF平分∠BCD,∠BCD=90°,
          ∴∠DCF=90°,∠DCF=45°,
          ∴∠DFC=45°,
          ∴∠ECG=∠AFC=90°+45°=135°,
          在△AFG和△ECG中
          AF=CE
          ∠AFG=∠ECG
          FG=CG
          ,
          ∴△AFG≌△ECG(SAS),
          ∴AG=EG=BG,∠EGC=∠AGF,∠GAF=∠GEC,
          ∵∠AGN=∠GAF=∠BGN,
          ∴∠AGN=∠GAF=∠BGN=∠GEC,
          ∵∠GAF+∠AGF=180°-135°=45°,
          ∴∠EGC+∠BGF=2(∠GAF+∠AGF)=90°
          ∴△BEG是等腰直角三角形.
          點(diǎn)評:本題考查了等腰梯形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,等腰直角三角形的判定等知識點(diǎn)的綜合運(yùn)用,題目綜合性比較強(qiáng),有一定的難度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在?ABCD中,AO⊥BC,垂足為O,已知∠ABC=60°,BO=2,AO=2
          3

          (1)求線段AB的長;
          (2)如圖2,點(diǎn)E為線段AB的中點(diǎn),過點(diǎn)E的直線FG與CB的延長線交于點(diǎn)F,與射線AD交于點(diǎn)G,連接OE,以O(shè)E所在直線為對稱軸,△OEF經(jīng)軸對稱變換后得到△OEF′,記直線EF′與射線AD的交點(diǎn)為H.
          ①當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時,求證:△AEG∽△AHE;
          ②若HG=6,求AG的長.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          探究規(guī)律:
          已知,如圖1,直線m∥n,A、B為直線n上的兩點(diǎn),C、P為直線m上的兩點(diǎn).若A、B、C為三個定點(diǎn),P為動點(diǎn),則
          (1)△PAB與△CAB的面積大小關(guān)系為
           
          ;
          (2)請你在圖1中再畫出一個與△ABC面積相等的△DEF,并說明面積相等的理由.
          解決問題:
          問題1:如圖2,在?ABCD中,點(diǎn)P是CD上任意一點(diǎn),
          則S△PAB
           
          S△ADP+S△BCP(填寫“>”、“<”或“=”).
          問題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個底面為圓形的建筑物,點(diǎn)O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過公路邊(AB)上一點(diǎn)P,請你確定點(diǎn)P的位置,并畫出分割線,說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          23、如圖1,矩形ABCD中,BC=2AB,M為AD的中點(diǎn),連接BM.
          (1)請你判斷并寫出∠BMD是∠ABM的幾倍;
          (2)如圖2,在?ABCD中,BC=2AB,M為AD的中點(diǎn),CE⊥AB,連接EM、CM,請問:∠AEM與∠DME是否也具有(1)中的倍數(shù)關(guān)系?若有,請證明;若沒有,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•槐蔭區(qū)一模)(1)已知:如圖1,點(diǎn)A、C、D、B在同一條直線上,AC=BD,AE=BF,∠A=∠B.求證:∠E=∠F.

          (2)已知:如圖2,在?ABCD中,AE平分∠DAB,交CD于點(diǎn)E.求證:DA=DE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在?ABCD中,AE⊥BC于E,E恰為BC的中點(diǎn),AD=AE.
          (1)如圖2,點(diǎn)P在線段BE上,作EF⊥DP于點(diǎn)F,連接AF.求證:DF-EF=
          2
          AF;
          (2)請你在圖3中畫圖探究:當(dāng)P為射線EC上任意一點(diǎn)(P不與點(diǎn)E重合)時,作EF⊥DP于點(diǎn)F,連接AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?直接寫出你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案