日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖一個(gè)二次函數(shù)的圖象經(jīng)過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)Cy軸的正半軸上,AB=OC.

          (1)求點(diǎn)C的坐標(biāo);

          (2)求這個(gè)二次函數(shù)的解析式,并求出該函數(shù)的最大值

          【答案】(1)點(diǎn)C的坐標(biāo)為(0,5);(2)所求二次函數(shù)的解析式為y=-x2x+5,最大值為.

          【解析】

          (1)根據(jù)A.B兩點(diǎn)的坐標(biāo)及點(diǎn)Cy軸正半軸上,且AB=OC.求出點(diǎn)C的坐標(biāo)為(0,5);

          (2)設(shè)二次函數(shù)的解析式為y=ax2+bx+c,把A、B、C三點(diǎn)的坐標(biāo)代入解析式,可求出a、b、c的值.

          (1)A(-1,0),B(4,0)

          AO=1,OB=4,

          AB=AO+OB=1+4=5,

          OC=5,即點(diǎn)C的坐標(biāo)為(0,5);

          (2)設(shè)圖象經(jīng)過(guò)A、C、B三點(diǎn)的二次函數(shù)的解析式為y=ax2+bx+c

          由于這個(gè)函數(shù)圖象過(guò)點(diǎn)(0,5),可以得到C=5,又由于該圖象過(guò)點(diǎn)(-1,0),(4,0),則:

          解方程組,得

          ∴所求的函數(shù)解析式為y=-x2+x+5

          a=-<0

          ∴當(dāng)x=-時(shí),y有最大值

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知A組數(shù)據(jù)為2、3、6、6、7、8、8、8,B組數(shù)據(jù)為4、5、8、8、9、10、10、10,則描述A、B兩組數(shù)據(jù)的統(tǒng)計(jì)量中相等的是( 。

          A. 眾數(shù) B. 中位數(shù) C. 平均數(shù) D. 方差

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,一塊RtABC的綠地,量得兩直角邊AC=8cm,BC=6cm.現(xiàn)在要將這塊綠地?cái)U(kuò)充成等腰△ABD,且擴(kuò)充部分(△ADC)是以8cm為直角邊長(zhǎng)的直角三角形,求擴(kuò)充等腰△ABD的周長(zhǎng).

          1)在圖1中,當(dāng)AB=AD=10cm時(shí),△ABD的周長(zhǎng)為

          2)在圖2中,當(dāng)BA=BD=10cm時(shí),△ABD的周長(zhǎng)為

          3)在圖3中,當(dāng)DA=DB時(shí),求△ABD的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是用個(gè)相同的小長(zhǎng)方形與個(gè)小正方形鑲嵌而成的正方形圖案,已知該圖案的面積為,小正方形的面積為,若用表示小長(zhǎng)方形的兩邊長(zhǎng)() ,請(qǐng)觀察圖案,指出以下關(guān)系式中,不正確的是(

          A.B.

          C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線y=﹣x2+bx+cx軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

          (1)求該拋物線的解析式;

          (2)在拋物線上求一點(diǎn)P,使SPAB=SABC,寫(xiě)出P點(diǎn)的坐標(biāo);

          (3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QBC的周長(zhǎng)最?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

          投資量x(萬(wàn)元)

          2

          種植樹(shù)木利潤(rùn)y1(萬(wàn)元)

          4

          種植花卉利潤(rùn)y2(萬(wàn)元)

          2

          (1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;

          (2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫(xiě)出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?

          (3)若該專業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫(xiě)出投資種植花卉的金額m的范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等邊ABCADBC,AD=12,若點(diǎn)P在線段AD上運(yùn)動(dòng),當(dāng)AP+BP的值最小時(shí),AP的長(zhǎng)為( .

          A.4B.8C.10D.12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于多項(xiàng)式Ax2bxcbc為常數(shù)),作如下探究:

          1)不論x取何值,A都是非負(fù)數(shù),求bc滿足的條件;

          2)若A是完全平方式,

          ①當(dāng)c=9時(shí),b= ;當(dāng)b=3時(shí),c= ;

          ②若多項(xiàng)式Bx2dxcA有公因式,求d的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中,的中點(diǎn),,分別是的三等分點(diǎn),,分別交,兩點(diǎn),則等于(

          A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案