日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 小華將一張矩形紙片(如圖1)沿對(duì)角線CA剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.

          (1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;

          (2)在(1)的條件下,求出∠BMD的大小(用含α的式子表示),并說(shuō)明當(dāng)α=45°時(shí),△BMD是什么三角形?

          (3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.

          答案:
          解析:

            解:(1)  (1分)

            證明:∵的中點(diǎn)為 ∴在中,

            在中,

            ∴  (3分)

            (2)∵

            同理

            ∴

            而

            ∴  (6分)

            ∴當(dāng)時(shí),,此時(shí)為等腰直角三角形  (8分)

            (3)當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一定的角度,仍然存在,

              (9分)

            故當(dāng)時(shí),為等邊三角形  (10分)


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          小華將一張矩形紙片(如圖1)沿對(duì)角線CA剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
          (1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
          (2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說(shuō)明當(dāng)α=45°時(shí),△BMD是什么三角形;
          (3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。

          【小題1】(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
          【小題2】(2)在(1)的條件下,求出∠BMD的大小(用含β的式子表示),并說(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
          【小題3】(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市余杭區(qū)星橋中學(xué)八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

          小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。

          【小題1】(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
          【小題2】(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆⒄f(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
          【小題3】(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012年浙江省杭州市八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

          小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。

           

           

           

           

           

           

          1.(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)

          2.(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆⒄f(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)

          3.(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年河北省張家口市橋東區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          小華將一張矩形紙片(如圖1)沿對(duì)角線CA剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
          (1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
          (2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說(shuō)明當(dāng)α=45°時(shí),△BMD是什么三角形;
          (3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案