日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上.
          (1)若∠B=∠CAD=30°,求證:AD是⊙O的切線;
          (2)若將(1)中的條件改為“∠B=∠CAD”,(1)中的結(jié)論還成立嗎?說(shuō)明理由;
          (3)在第(1)問(wèn)的條件下,若OD⊥AB,BC=2,求AD的長(zhǎng).
          分析:(1)連接OA.根據(jù)圓周角定理,得∠AOC=2∠B=60°,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理,得∠OAC=∠ACO=60°,從而得到∠OAD=90°,則AD是⊙O的切線;
          (2)設(shè)∠B=∠CAD=α.根據(jù)圓周角定理,得∠AOC=2α,從而求得∠OAC=90°-α,則∠OAD=90°,即可證明AD是⊙O的切線;
          (3)根據(jù)垂徑定理,得弧BC=弧AC,則AC=BC=2.結(jié)合(1)的結(jié)論,知OA=OC=AC=2,在直角三角形OAD中,利用解直角三角形的知識(shí)即可求解.
          解答:解:(1)連接OA.
          ∵∠B=30°,
          ∴∠AOC=60°.
          ∵OA=OC,
          ∴∠OAC=60°.
          ∴∠OAC+∠CAD=60°+30°=90°,
          ∴AD是⊙O的切線.

          (2)成立.
          設(shè)∠B=∠CAD=α.
          ∴∠AOC=2α,
          ∴∠OAC=
          1
          2
          (180°-2α)=90°-α,
          ∴∠OAC+∠CAD=90-α°+α=90°,
          ∴AD是⊙O的切線.

          (3)∵OD⊥AB,
          ∴弧BC=弧AC.
          ∴BC=AC.
          由(1)可知:OA=AC=BC=2,∠O=60°,
          ∵在Rt△AOD中,AO=2,∠O=60°,
          ∴AD=OA•tan60°=2
          3
          點(diǎn)評(píng):此題綜合運(yùn)用了圓周角定理、等腰三角形的性質(zhì)、三角形的內(nèi)角和定理、切線的判定定理以及解直角三角形的知識(shí).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
          求證:四邊形AMNE是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過(guò)F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
          求:BD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
          (1)請(qǐng)問(wèn):AB、BD、DC有何數(shù)量關(guān)系?并說(shuō)明理由.
          (2)如果∠B=60°,請(qǐng)問(wèn)BD和DC有何數(shù)量關(guān)系?并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案