日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

          單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)

          沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止

          運動,設(shè)P、Q運動的時間為t秒(t>0).

          (1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

          (2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

          求出此時△APQ的面積.

          (3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

          形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

          (4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

           

          【答案】

          【解析】解:(1)在Rt△AOB中,OA=4,OB=3

                     ∴AB=

                    ①P由O向A運動時,OP=AQ=t,AP=4-t

                      過Q作QH⊥AP于H點,由QH//BO得

                     

                     ∴

                      即     (0<t≤4)

          ②當(dāng)4<t≤5時,AP=t-4  AQ=t

          sin∠BAO=

              OH=

           ∴

                   =··············(4分)

          (2)由題意知,此時△APQ≌△DPQ

               ∠AQP=900   ∴cosA=

               當(dāng)0<t≤4   ∴    即

               當(dāng)4<t≤5時,   t=-16(舍去)

             ∴···············(6分)

          (3)存在,有以下兩種情況

          ①若PE//BQ,則等腰梯形PQBE中PQ=BE

          過E、P分分別作EM⊥AB于M,PN⊥AB于N

          則有BM=QN,由PE//BQ得

          又∵AP=4-t,  ∴AN=

          由BM=QN,得

             ∴···································(8分)

          ②若PQ//BE,則等腰梯形PQBE中

          BQ=EP且PQ⊥OA于P點

          由題意知

          ∵OP+AP=OA  ∴

          t··············(10分)

          由①②得E點坐標(biāo)為

          (4)①當(dāng)P由O向A運動時,OQ=OP=AQ=t

          可得∠QOA=∠QAO   ∴∠QOB=∠QBO

          ∴OQ=BQ=t        ∴BQ=AQ=AE

          ······················(11分)

          ②當(dāng)P由A向O運動時,OQ=OP=8-t

          BQ=5-t, 

          在Rt△OGQ中,OQ2 = RG2 + OG2

          即(8-t)2 =

          ∴t = 5·························(12分)

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止運動,設(shè)P、Q運動的時間為t秒(t>0).
          (1)試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;
          (2)在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.求出此時△APQ的面積.
          (3)在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
          (4)伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.
          精英家教網(wǎng)
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

          單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)

          沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止

          運動,設(shè)P、Q運動的時間為t秒(t>0).

          (1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

          (2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

          求出此時△APQ的面積.

          (3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

          形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

          (4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

          單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)

          沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止

          運動,設(shè)P、Q運動的時間為t秒(t>0).

          (1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

          (2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

          求出此時△APQ的面積.

          (3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

          形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

          (4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年3月重慶市一中九年級(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止運動,設(shè)P、Q運動的時間為t秒(t>0).
          (1)試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;
          (2)在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.求出此時△APQ的面積.
          (3)在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
          (4)伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.


          查看答案和解析>>

          同步練習(xí)冊答案