日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•萊蕪)如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC、BD互相垂直,AC=9,中位線長,則對(duì)角線BD的長是   
          【答案】分析:作DE∥AC,從而得到四邊形ACED為平行四邊形,根據(jù)平行四邊形的性質(zhì)及中位線定理即可求得BE的長,再利用勾股定理即可求得BD的長.
          解答:解:作DE∥AC交BC的延長線于點(diǎn)E
          ∵AD∥CE,
          ∴四邊形ACED為平行四邊形,
          ∴AD=CE,DE=AC=9,ED⊥BD,
          ∵FJ=(AD+BC)=(CE+BC)=BE=,
          ∴BE=15,
          ∴BD===12.
          點(diǎn)評(píng):本題考查的知識(shí)比較全面,需要用到梯形和三角形中位線定理以及平行四邊形的性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

          (2007•萊蕪)如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點(diǎn),延長DA至點(diǎn)E,使CE=CD.
          (1)求證:AE=BD;
          (2)若AC⊥BC,求證:AD+BD=CD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(02)(解析版) 題型:選擇題

          (2007•萊蕪)如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處,折痕為AF,若CD=6,則AF等于( )

          A.
          B.
          C.
          D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(15)(解析版) 題型:解答題

          (2007•萊蕪)如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點(diǎn),延長DA至點(diǎn)E,使CE=CD.
          (1)求證:AE=BD;
          (2)若AC⊥BC,求證:AD+BD=CD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2007•萊蕪)如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處,折痕為AF,若CD=6,則AF等于( )

          A.
          B.
          C.
          D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•萊蕪)如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點(diǎn),延長DA至點(diǎn)E,使CE=CD.
          (1)求證:AE=BD;
          (2)若AC⊥BC,求證:AD+BD=CD.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案