日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22、如圖,△ABC中,點(diǎn)D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對(duì)相似三角形?請(qǐng)選擇一對(duì)進(jìn)行證明.
          分析:圖中有兩對(duì)相似三角形:(1)△ADE∽△AEC或(2)△BCD∽△ACB;
          (1)首先由∠BDC=60°、CE⊥DE證得CD=2DE,由此可得出AD=DE,即∠DAE=∠DEA=30°,即可證得∠DEA=∠ECA=30°,加上公共角∠EAC,即可判定兩個(gè)三角形相似;
          (2)同(1)可證得∠EAC=∠ECA=30°,進(jìn)一步可證得∠EBA=∠EAB=15°;由此可得出AE=BE=CE,即△CEB是等腰Rt△;則∠CBE=45°=∠BAC,再加上公共角∠BCD,即可判定兩個(gè)三角形相似.
          解答:解:
          圖中相似三角形有△ADE∽△AEC或△BCD∽△ACB兩對(duì).(2分)
          證明(1)△ADE∽△AEC.
          ∵CE⊥BD于E,
          ∴∠CED=90°.
          ∵∠BDC=60°,
          ∴∠ECD=30°.
          ∴CD=2ED.(3分)
          ∵CD=2AD,
          ∴AD=ED.(4分)
          ∴∠DEA=∠DAE.
          ∵∠BDC=60°,
          ∴∠DEA=∠DAE=30°,
          ∴∠DEA=∠ECD=30°.(5分)
          ∵∠DAE=∠EAC,
          ∴△ADE∽△AEC.(6分)

          證明(2)△BCD∽△ACB
          提示:在證明△BCD∽△ACB時(shí)
          證出①AE=CE,(給1分)
          ②AE=BE,(給到2分)
          ③∠CBD=45°,(給到3分)
          ④△BCD∽△ACB.(給到4分)
          點(diǎn)評(píng):此題主要考查的是相似三角形的判定和性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC中,點(diǎn)D、E分別為AB、AC的中點(diǎn),連接DE,線段BE、CD相交于點(diǎn)O,若OD=2,求OC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC中,點(diǎn)D為BC上一點(diǎn),且AB=AC=CD,則圖中∠1和∠2的關(guān)系是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC中,點(diǎn)D為AB邊上的一點(diǎn),點(diǎn)F為BC延長線上一點(diǎn),DF交AC于點(diǎn)E.下列結(jié)論中不正確的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC中,點(diǎn)D在BC上,點(diǎn)E在AB上,BD=BE,下列四個(gè)條件中,不能使△ADB≌△CEB的條件是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案