日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖,在ABC中,∠BAC=90°ADBCD,AE平分∠DAC,∠B=50°,求∠AEC的度數(shù).

          【答案】115°

          【解析】

          根據(jù)直角三角形兩銳角互余求出∠BAD,然后求出∠DAC,再根據(jù)角平分線的定義求出∠DAE,然后求出∠BAE,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠AEC=BAE+B代入數(shù)據(jù)計(jì)算即可得解.

          ADBC,∠B=50°,
          ∴∠BAD=90°-B=90°-50°=40°,
          ∵∠BAC=90°
          ∴∠DAC=BAC-BAD=90°-40°=50°,
          AE平分∠DAC
          ∴∠DAE=DAC=×50°=25°,
          ∴∠BAE=40°+25°=65°,
          ∴∠AEC=BAE+B=65°+50°=115°

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)O在線段AB上,(不與端點(diǎn)A、B重合),以點(diǎn)O為圓心,OA的長(zhǎng)為半徑畫(huà)弧,線段BP與這條弧相切與點(diǎn)P,直線CD垂直平分PB,交PB于點(diǎn)C,交AB于點(diǎn)D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。

          (1)求證:OPED;

          (2)當(dāng)∠ABP=30°時(shí),求扇形AOP的面積,并證明四邊形PDBE是菱形;

          (3)過(guò)點(diǎn)OOFDE于點(diǎn)F,如圖所示,線段EF的長(zhǎng)度是否隨r的變化而變化?若不變,直接寫(xiě)出EF的值;若變化,直接寫(xiě)出EFr的關(guān)系。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一個(gè)梯子AB長(zhǎng)2.5米,頂端A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5米,梯子滑動(dòng)后停在DE的位置上,測(cè)得BD長(zhǎng)為0.5米,則梯子頂端A下落了( 。┟祝

          A. 0.5 B. 1 C. 1.5 D. 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見(jiàn)解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB,

          ∴∠COE=CAD,EOD=ODA

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖在平面直角坐標(biāo)系中,直線 x軸于A點(diǎn),y軸于B點(diǎn),點(diǎn)C是線段AB的中點(diǎn),連接OC,然后將直線OC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)30°x軸于點(diǎn)D再過(guò)D點(diǎn)作直線DC1OC,AB與點(diǎn)C1,然后過(guò)C1點(diǎn)繼續(xù)作直線D1C1DC,x軸于點(diǎn)D1并不斷重復(fù)以上步驟,OCD的面積為S1,DC1D1的面積為S2依此類推,后面的三角形面積分別是S3,S4,那么S1=_____,S=S1+S2+S3+…+Sn,當(dāng)n無(wú)限大時(shí)S的值無(wú)限接近于_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖四個(gè)幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個(gè)面,9條棱,6個(gè)頂點(diǎn),觀察圖形,填寫(xiě)下面的空.

          1)四棱柱有   個(gè)面,   條棱,   個(gè)頂點(diǎn);

          2)六棱柱有   個(gè)面,   條棱,   個(gè)頂點(diǎn);

          3)由此猜想n棱柱有   個(gè)面,   條棱,   個(gè)頂點(diǎn).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某日的錢(qián)塘江觀潮信息如圖:

          按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時(shí)間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地交叉潮的潮頭離乙地12千米記為點(diǎn)A(0,12),點(diǎn)B坐標(biāo)為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫(huà).

          (1)求m的值,并求出潮頭從甲地到乙地的速度;

          (2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?

          (3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為0.48千米/分,小紅逐漸落后.問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在RtABC中,∠ACB90°,D、E分別是AB、AC的中點(diǎn),連接CD,過(guò)EEFDCBC的延長(zhǎng)線于F

          1)證明:四邊形CDEF是平行四邊形;

          2)若四邊形CDEF的周長(zhǎng)是16cm,AC的長(zhǎng)為8cm,求線段AB的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案