日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 10、△ABC的一個內(nèi)角的大小是40°,且∠A=∠B,那么∠C的外角的大小是( 。
          分析:此題沒有指明已知的內(nèi)角是哪個角,故應該分情況進行分析,從而確定∠C的外角的大。
          解答:解:①若∠A=40°,則∠B=40°,∠C=100°,∠C的外角為80°.
          ②若∠C=40°,則∠C的外角為140°.
          故選D.
          點評:此題主要考查三角形的外角性質(zhì)及三角形內(nèi)角和定理的綜合運用.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:閱讀理解

          閱讀下列材料:
          小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.
          他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
          喜歡動腦筋的小明又繼續(xù)探究:當三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
          他的做法是:

          如圖3,先畫△ADC ,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因為∠CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結(jié)論:       
          當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
          請你參考小明的做法繼續(xù)探究:當三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012-2013學年浙江省杭州市蕭山區(qū)新圍初中八年級第二次月考數(shù)學試卷(帶解析) 題型:單選題

          △ABC的一個內(nèi)角的大小是40°,且∠A=∠B,那么∠C的外角的大小是 (     )

          A.80°或140°B.80°或100°C.100°或140°D.140°

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011-2012學年北京大興區(qū)中考一模數(shù)學試卷(帶解析) 題型:解答題

          閱讀下列材料:
          小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.
          他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
          喜歡動腦筋的小明又繼續(xù)探究:當三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
          他的做法是:

          如圖3,先畫△ADC ,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因為∠CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結(jié)論:       
          當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
          請你參考小明的做法繼續(xù)探究:當三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011-2012學年北京大興區(qū)中考一模數(shù)學試卷(解析版) 題型:解答題

          閱讀下列材料:

          小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.

              他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.

          喜歡動腦筋的小明又繼續(xù)探究:當三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.

          他的做法是:

          如圖3,先畫△ADC ,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因為∠CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結(jié)論:       

          當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.

          請你參考小明的做法繼續(xù)探究:當三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).

           

          查看答案和解析>>

          同步練習冊答案