日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.若把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系.
          (1)在某一次發(fā)球時(shí),甲將球從O點(diǎn)正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時(shí)距O點(diǎn)的水平距離為6m.
          ①求拋物線的解析式.
          ②球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.
          (2)若球的最大飛行高度時(shí)距O點(diǎn)的水平距離6m不變,要使球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項(xiàng)系數(shù)的最大值.
          (1)①設(shè)拋物線的解析式為y=a(x-6)2+2.6,由題意,得
          2=a(0-6)2+2.6,
          解得:a=-
          1
          60
          ,
          ∴拋物線的解析式為:y=-
          1
          60
          (x-6)2+2.6;
          ②x=9時(shí),
          y=-
          1
          60
          (9-6)2+2.6=2.45.
          ∵2.45>2.43,
          ∴球能越過球網(wǎng);
          當(dāng)x=18時(shí),
          y=-
          1
          60
          (18-6)2+2.6,
          解得:y=0.2>0,
          ∴球會(huì)出界;

          (3)設(shè)拋物線的解析式為y=a(x-6)2+h,由題意得:2=a(0-6)2+h,
          ∴a=
          2-h
          36

          ∴y=
          2-h
          36
          (x-6)2+h,
          ∴當(dāng)x=9時(shí),y=
          2-h
          36
          (9-6)2+h=
          2+3h
          4
          >2.43,
          當(dāng)x=18時(shí),y=
          2-h
          36
          (18-6)2+h=8-3h≤0,
          2+3h
          4
          >2.43
          8-3h≤0
          ,
          解得:h≥
          8
          3
          ,
          當(dāng)h=
          8
          3
          時(shí),a最大,
          ∴二次項(xiàng)系數(shù)的最大值為:
          2-
          8
          3
          36
          =-
          1
          54
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          已知拋物線的頂點(diǎn)是(-1,-2),且過點(diǎn)(1,10).求此拋物線對(duì)應(yīng)的二次函數(shù)關(guān)系式______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線的頂點(diǎn)為A(2,1),且經(jīng)過原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
          (1)求拋物線的解析式;
          (2)在拋物線上求點(diǎn)M,使△MOB的面積是△AOB面積的3倍;
          (3)連接OA,AB,在x軸下方的拋物線上是否存在點(diǎn)N,使△OBN與△OAB相似?若存在,求出N點(diǎn)的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=
          1
          2
          x2
          +bx+c與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1).
          (1)求拋物線的解析式;
          (2)點(diǎn)E是線段AC上一動(dòng)點(diǎn),過點(diǎn)E作DE⊥x軸于點(diǎn)D,連接DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
          (3)在直線BC上是否存在一點(diǎn)P,使△ACP為等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,-3)、B(3,2)兩點(diǎn),且與x軸相交于M、N兩點(diǎn),當(dāng)以線段MN為直徑的圓的面積最小時(shí),求M、N兩點(diǎn)的坐標(biāo)和四邊形AMBN的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=-x2+bx+c的圖象經(jīng)過(1,0)和(0,3)兩點(diǎn),它的部分圖象如下圖.
          (1)求b、c的值;
          (2)寫出當(dāng)y>0時(shí),x的取值范圍;
          (3)求y的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          若f(x)>0,符號(hào)
          ba
          f(x)dx
          表示函數(shù)y=f(x)的圖象與過點(diǎn)(a,0),(b,0)且和x軸垂直的直線及x軸圍成圖形的面積.如圖,
          21
          (x+1)dx
          表示梯形ABCD的面積.設(shè)A=
          21
          2
          x
          dx
          ,B=
          21
          (-x+3)dx
          ,C=
          21
          (-
          3
          2
          x2+
          7
          2
          x)dx
          ,則A,B,C中最大的是( 。
          A.AB.BC.CD.無法比較

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直角坐標(biāo)系中,正方形ABOD的邊長(zhǎng)為a,O為原點(diǎn),點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)D在y軸的正半軸上,直線OE的解析式為y=2x,直線CF過x軸上的一點(diǎn)C(-
          3
          5
          a
          ,0)且與OE平行,現(xiàn)正方形以每秒
          a
          10
          的速度勻速沿x軸正方向平行移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,正方形被夾在直線OE和CF間的部分的面積為S.
          (1)當(dāng)0≤t<4時(shí),寫出S與t的函數(shù)關(guān)系式;
          (2)當(dāng)4≤t≤5時(shí),寫出S與t的函數(shù)關(guān)系式,在這個(gè)范圍內(nèi)S有無最大值?若有,請(qǐng)求出最大值,若沒有請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某汽車制造公司計(jì)劃生產(chǎn)A、B、C三種型號(hào)的汽車共80輛.并且公司在設(shè)計(jì)上要求,A、C兩種型號(hào)之間按如圖所示的函數(shù)關(guān)系生產(chǎn).該公司投入資金不少于1212萬元,但不超過1224萬元,且所有資金全部用于生產(chǎn)這三種型號(hào)的汽車,三種型號(hào)的汽車生產(chǎn)成本和售價(jià)如下表:
          ABC
          成本(萬元/輛)121518
          售價(jià)(萬元/輛)141822
          設(shè)A種型號(hào)的汽車生產(chǎn)x輛;
          (1)設(shè)C種型號(hào)的汽車生產(chǎn)y輛,求出y與x的函數(shù)關(guān)系式;
          (2)該公司對(duì)這三種型號(hào)汽車有哪幾種生產(chǎn)方案?
          (3)設(shè)該公司賣車獲得的利潤(rùn)W萬元,求公司如何生產(chǎn)獲得利潤(rùn)最大?
          (4)根據(jù)市場(chǎng)調(diào)查,每輛A、B型號(hào)汽車的售價(jià)不會(huì)改變,每輛C型號(hào)汽車在不虧本的情況下售價(jià)將會(huì)降價(jià)a萬元(a>0),且所生產(chǎn)的三種型號(hào)汽車可全部售出,該公司又將如何生產(chǎn)獲得利潤(rùn)最大?(注:利潤(rùn)=售價(jià)-成本)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案