日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,直線y=k1x+b與反比例函數(shù)y=
          k2
          x
           的圖象相交于A,B兩點(diǎn),已知A(1,4).
          (1)求反比例函數(shù)的解析式;
          (2)直線AB交x軸于點(diǎn)C,連接OA,當(dāng)△AOC的面積為6時(shí),求直線AB的解析式;
          (3)直接寫(xiě)出不等式組
          x>0
          k2
          x
          >k
          1
          x+b
           的解集.
          分析:(1)把A點(diǎn)坐標(biāo)代入函數(shù)關(guān)系式即可.
          (2)要想求出一次函數(shù)解析式,求出C點(diǎn)橫坐標(biāo)是關(guān)鍵,而C點(diǎn)橫坐標(biāo)與△AOC的面積有關(guān),可通過(guò)面積公式求的OC的長(zhǎng),進(jìn)而求出C點(diǎn)坐標(biāo).
          (3)圖形結(jié)合,根據(jù)函數(shù)圖象與不等式的關(guān)系求得.
          解答:解:(1)由已知得反比例函數(shù)解析式為y=
          k2
          x
          ,
          ∵點(diǎn)A(1,4)在反比例函數(shù)的圖象上,
          ∴4=
          k2
          1
          ,
          ∴k2=4,
          ∴反比例函數(shù)的解析式為y=
          4
          x
          ;

          (2)設(shè)C的坐標(biāo)為(-a,0)(a>0),
          ∵S△AOC=6,
          ∴S△AOC=
          1
          2
          |OC|•4=
          1
          2
          ×a×4=6,
          解得:a=3,
          ∴C(-3,0),
          ∵C與A在直線AB上,
          -3k1+b=0
          k1+b=4
          ,
          解得:
          k1=1
          b=3
          ,
          ∴直線AB的解析式為:y=x+3;

          (3)由圖象可知,不等式組
          x>0
          k2
          x
          >k
          1
          x+b
          的解集為:0<x<1.
          點(diǎn)評(píng):此題考查了待定系數(shù)法求函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題、三角形的面積以及不等式組的解集.此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          3、如圖所示,直線AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列分類(lèi)不同于其它三個(gè)的(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示:直線MN⊥RS于點(diǎn)O,點(diǎn)B在射線OS上,OB=2,點(diǎn)C在射線ON上,OC=2,點(diǎn)E是射線OM上一動(dòng)點(diǎn),連接EB,過(guò)O作OP⊥EB于P,連接CP,過(guò)P作PF⊥PC交射線OS于F.

          (1)求證:△POC∽△PBF.
          (2)當(dāng)OE=1,OE=2時(shí),BF的長(zhǎng)分別為多少?當(dāng)OE=n時(shí),BF=
          4
          n
          4
          n

          (3)當(dāng)OE=1時(shí),S△EBF=S1;OE=2時(shí),S△EBF=S2;…,OE=n時(shí),S△EBF=Sn.則S1+S2+…+Sn=
          2n
          2n
          .(直接寫(xiě)出答案)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,直線a、b被直線c所截,現(xiàn)給出下列四種條件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判斷是a∥b的條件的序號(hào)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖所示,直線AB∥CD,CO⊥OD于O點(diǎn),并且∠1=40度.則∠D的度數(shù)是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          將一張矩形紙板沿對(duì)角線剪開(kāi)得到兩個(gè)三角形,△ABC與△DEF,∠B=∠E=90°,如圖①所示.
          (1)將△ABC與△DEF按如圖②方式擺放,使點(diǎn)B與E重合,點(diǎn)C、B、E、F在同一條直線上,邊AB與DE重合,連接CD、FA,并延長(zhǎng)FA交CD于G.試證:FA⊥CD
          (2)在(1)所述基礎(chǔ)上,將紙板△ACB沿直線CF向右平移,并剪去ED右側(cè)部分,此時(shí)CA與ED的交點(diǎn)為A1,連接CD、FA1,并延長(zhǎng)FA1交CD于G,如圖③所示,直線FA1和CD的位置關(guān)系是
           
          (直接寫(xiě)出)
          (3)在(2)所述基礎(chǔ)上,將紙板△A1CE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)α度(0°<α<90°)至如圖④所示位置,連接CD、FA1,CD與FA1交于點(diǎn)G,試判斷FA1與CD的位置關(guān)系?并說(shuō)明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案