日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線y=ax2+bx-3與x軸交于A、B兩點,與y軸交于C點,經(jīng)過A、B、C三點的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為
          5
          .設⊙M與y軸交于D.
          (1)求m、a、b的值;
          (2)若動點P從點C出發(fā),沿線段CB以每秒2個單位長的速度運動,過點P作y軸的平行線交拋物線于Q.當點P運動幾秒時,線段PQ的值最大,并求此時P點坐標;
          (3)在(2)條件下,當線段PQ的值最大時,四邊形ACQB面積是否也最大?說明理由.
          分析:(1)通過拋物線的解析式,首先能確定的是OC的長,已知⊙M的半徑長,過M作y軸的垂線,通過構建的直角三角形能確定點M的縱坐標;同理,過M作x軸的垂線后可求出點B的坐標,而A、B關于拋物線的對稱軸對稱(根據(jù)圓和拋物線的對稱性,點M正好在拋物線對稱軸上),在確定點A的坐標后,利用待定系數(shù)法即可求出a、b的值.
          (2)首先求出直線BC的解析式,根據(jù)直線BC和拋物線的解析式,先表示出點P、Q的坐標,兩點縱坐標的差即為線段PQ的長,根據(jù)所得函數(shù)的性質(zhì)即可得解.
          (3)四邊形ACQB中,可分作兩部分對待:△ABC、△BCQ,前者的面積是定值,若四邊形的面積最大,那么△BCQ的面積最大,而這個面積可由PQ×OB(點B、C橫坐標差的絕對值)的一半,OB是定值,顯然PQ最大時,四邊形的面積也是最大的.
          解答:解:(1)作MN⊥CD于N,MH⊥AB于H,分別連接MC、MB.
          ∵⊙M的半徑為
          5
          ,xM=1,
          ∴CN=2,ON=1,BH=2,OB=3;
          得m=-1.
          ∵圓心M(1,m)恰好在此拋物線的對稱軸上,
          ∴OA=1,A(-1,0)、B(3,0);
          代入y=ax2+bx-3得:
          a-b-3=0
          9a+3b-3=0
          ,
          解得
          a=1
          b=-2

          所以m=-1,a=1,b=-2.

          (2)設點P運動的時間為t秒,則CP=2t;
          又∵OC=OB,
          ∴∠OBC=∠OCB=45°,
          ∴xP=
          2
          t;
          易知,直線BC的解析式為 y=x-3
          ∴點P(
          2
          t,
          2
          t-3).
          ∵PQ∥y軸,
          ∴Q(
          2
          t,2t2-2
          2
          t-3).
          PQ=
          2
          t-3-(2t2-2
          2
          t-3)=-2t2+3
          2
          t=-2(t-
          3
          2
          4
          2+
          9
          4

          當點P運動
          3
          2
          4
          秒,線段PQ的值最大;
          故此時點P的坐標為(
          3
          2
          ,-
          3
          2
          ).

          (3)當線段PQ的值最大是,四邊形ACQB的面積最大.理由:
          S四邊形ACQB=S△ABC+S△CQB,
          其中,S△ABC=
          1
          2
          AB×OC=
          1
          2
          ×4×3=6,為定值;
          而S△CQB=
          1
          2
          ×|xB-xC|×PQ=
          1
          2
          ×3×PQ=
          3
          2
          PQ
          當線段PQ的值最大時,△CQB的面積最大,即四邊形ABCQ的面積最大.
          點評:此題主要考查的是:函數(shù)解析式的確定、圓的對稱性、勾股定理的應用以及圖形面積的解法等重點知識;在解答類似最后一題的面積問題時,合理利用圖形間面積的和差關系是常用的方法.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
          (1)求拋物線的解析式;
          (2)求直線BC的函數(shù)解析式;
          (3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
          (4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結果)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
          (1)求這條拋物線所對應的函數(shù)關系式;
          (2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
          (1)求拋物線對應的函數(shù)關系式;
          (2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
          ①當t為何值時,四邊形OMPQ為矩形;
          ②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
          (1)求這條拋物線所對應的函數(shù)關系式;
          (2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
          (1)求此拋物線的解析式;
          (2)①當x的取值范圍滿足條件
          -2<x<0
          -2<x<0
          時,y<-3;
               ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
          (3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
          (4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

          查看答案和解析>>

          同步練習冊答案