日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在正方形ABCD中,EF分別是BC、AB上一點(diǎn),且AFBE,AEDF交于點(diǎn)G

          1)求證:AEDF

          2)如圖2,在DG上取一點(diǎn)M,使AGMG,連接CM,取CM的中點(diǎn)P.寫出線段PDDG之間的數(shù)量關(guān)系,并說明理由.

          3)如圖3,連接CG.若CGBC,則AFFB的值為   

          【答案】(1)見解析;(2)DGDP,理由見解析;(3)11.

          【解析】

          1)用SAS證△ABE≌△DAF即可;

          2DGDP,連接GP并延長至點(diǎn)Q,使PQPG,連接CQ,DQ,先用SAS證△PMG≌△PCQ,得CQMGAG,進(jìn)一步證明∠DAG=∠DCQ,再用SAS證明△DAG≌△DCQ,得∠ADF=∠CDQ,于是有∠FDQ90°,進(jìn)而可得△DPG為等腰直角三角形,由此即得結(jié)論;

          3)延長AE、DC交于點(diǎn)H,由條件CGBC可證CD=CG=CH,進(jìn)一步用SAS證△ABE≌△HCE,得BE=CE,因?yàn)?/span>AFBE,所以AFBF=BECE=11.

          解:(1)證明:正方形ABCD中,

          ABAD,∠ABE=∠DAF90°,BEAF,

          ∴△ABE≌△DAFSAS

          AEDF;

          2DGDP,理由如下:

          如圖,連接GP并延長至點(diǎn)Q,使PQPG,連接CQDQ,

          PM=PC,∠MPG=CPQ,

          ∴△PMG≌△PCQSAS),

          CQMGAG,∠PGM=PQC,

          CQDF

          ∴∠DCQ=∠FDC=∠AFG,

          ∵∠AFG+∠BAE90°,∠DAG+∠BAE90°,

          ∴∠AFG=DAG.

          ∴∠DAG=∠DCQ.

          又∵DA=DC

          ∴△DAG≌△DCQSAS).

          ∴∠ADF=∠CDQ.

          ∵∠ADC90°,

          ∴∠FDQ90°.

          ∴△GDQ為等腰直角三角形

          PGQ的中點(diǎn)

          ∴△DPG為等腰直角三角形.

          DGDP.

          311.

          證明:延長AE、DC交于點(diǎn)H

          CG=BC,BC=CD,

          CG=CD,∴∠1=2.

          ∵∠1+H=90°,∠2+3=90°,

          ∴∠3=H.

          CG=CH.

          CD=CG=CH.

          AB=CD,∴AB=CH.

          ∵∠BAE=H,∠AEB=HEC,

          ∴△ABE≌△HCESAS.

          BE=CE.

          AF=BE

          AFBF=BECE=11.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

          (1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

          (2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?

          (3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)其中滿足:

          1

          2)在坐標(biāo)平面內(nèi),將△ABC平移,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,若平移后E、F兩點(diǎn)都在坐標(biāo)軸上,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);

          3)若在△ABC內(nèi)部的軸上存在一點(diǎn)P,在(2)的平移下,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,使得△APQ的面積為10,則點(diǎn)P的坐標(biāo)為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在ABC中,BC邊上的高ADAC邊上的高BE交于點(diǎn)F,且∠BAC=45°,BD=6,CD=4,則ABC的面積為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)

          (1)已知6月份這種蔬菜的成本最低,此時(shí)出售每千克的收益是多少元?(收益=售價(jià)﹣成本)

          (2)哪個(gè)月出售這種蔬菜,每千克的收益最大?簡(jiǎn)單說明理由.

          (3)已知市場(chǎng)部銷售該種蔬菜4、5兩個(gè)月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個(gè)月的銷售量分別是多少萬千克?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,直線AB經(jīng)過點(diǎn)Ca,a),且交x軸于點(diǎn)Am0),交y軸于點(diǎn)B0,n),且mn滿足+(n1220

          1)求直線AB的解析式及C點(diǎn)坐標(biāo);

          2)過點(diǎn)CCDABx軸于點(diǎn)D,請(qǐng)?jiān)趫D1中畫出圖形,并求D點(diǎn)的坐標(biāo);

          3)如圖2,點(diǎn)E0,﹣2),點(diǎn)P為射線AB上一點(diǎn),且∠CEP45°,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知A=3x2x2y4xy,B=x22xyxy

          1)求A3B的值.

          2)當(dāng),求A3B的值.

          3)若A3B的值與的取值無關(guān),求x的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知,,,點(diǎn)E在線段AB上,,點(diǎn)F在直線AD上,

          ,求的度數(shù);

          找出圖中與相等的角,并說明理由;

          的條件下,點(diǎn)不與點(diǎn)B、H重合從點(diǎn)B出發(fā),沿射線BG的方向移動(dòng),其他條件不變,請(qǐng)直接寫出的度數(shù)不必說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形 ABCD 的邊長為 2,以點(diǎn) A 為圓心,1 為半徑作圓,點(diǎn) E 是⊙A 上的任意 一點(diǎn),點(diǎn) E 繞點(diǎn) D 按逆時(shí)針方向轉(zhuǎn)轉(zhuǎn) 90°,得到點(diǎn) F,接 AF,則 AF 的最大值是______________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案