【題目】如圖,過點A(4,0)的兩條直線l1,l2分別交y軸于點B,C,其中點B在原點上方,點C在原點下方,已知AB=2.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為20,求直線l2的解析式.
【答案】(1)點B的坐標(biāo)為(0,6);(2)y=x﹣4
【解析】
(1)先根據(jù)勾股定理求得BO的長,再寫出點B的坐標(biāo);
(2)先根據(jù)△ABC的面積為20,求得CO的長,再根據(jù)點A、C的坐標(biāo),運用待定系數(shù)法求得直線l2的解析式.
(1)∵點A(4,0)
∴AO=4
∵∠AOB=90°,AO=4,AB=2
∴OA2+OB2=AB2,
∴BO═=6
∴點B的坐標(biāo)為(0,6).
(2)∵△ABC的面積為20
∴BC×AO=20.
∴BC=10.
∵BO=6,
∴CO=10﹣6=4
∴C(0,﹣4).
設(shè)l2的解析式為y=kx+b,
則
解得
∴l2的解析式為:y=x﹣4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB, DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=∶DE=4∶1,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,AO是∠BAC的平分線,與AB的垂直平分線DO交于點O,∠ACB沿EF折疊后,點C 剛好與點O重合.下列結(jié)論錯誤的是( )
A.AO=COB.∠ECO=∠FCOC.EF⊥OCD.∠BFO=2∠FOC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線交x軸于A、B兩點,交y軸于C點,A點坐標(biāo)為(﹣1,0),OC=2,OB=3,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)P為坐標(biāo)平面內(nèi)一點,以B、C、D、P為頂點的四邊形是平行四邊形,求P點坐標(biāo);
(3)若拋物線上有且僅有三個點M1、M2、M3使得△M1BC、△M2BC、△M3BC的面積均為定值S,求出定值S及M1、M2、M3這三個點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 要了解某公司生產(chǎn)的100萬只燈泡的使用壽命,可以采用抽樣調(diào)查的方法
B. 4位同學(xué)的數(shù)學(xué)期末成績分別為100、95、105、110,則這四位同學(xué)數(shù)學(xué)期末成績的中位數(shù)為100
C. 甲乙兩人各自跳遠(yuǎn)10次,若他們跳遠(yuǎn)成績的平均數(shù)相同,甲乙跳遠(yuǎn)成績的方差分別為0.51和0.62,則乙的表現(xiàn)較甲更穩(wěn)定
D. 某次抽獎活動中,中獎的概率為表示每抽獎50次就有一次中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點B在第一象限,點C在x軸上,點A在y軸上,D、E分別是AB,OA中點.過點D的雙曲線與BC交于點G.連接DC,F在DC上,且DF:FC=3:1,連接DE,EF.若△DEF的面積為6,則k的值為( 。
A. B.
C. 6 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點在直線
上,已知點
是
的中點,點
是
的中點,AB=6cm,BC=4cm,求
的長. (要求考慮可能出現(xiàn)的情況,畫出圖形,寫出完整解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家自2016年1月1日起實行全面放開二胎政策,某計生組織為了解該市家庭對待這項政策的態(tài)度,準(zhǔn)備采用以下調(diào)查方式中的一種進(jìn)行調(diào)查:
A.從一個社區(qū)隨機(jī)選取1 000戶家庭調(diào)查;
B.從一個城鎮(zhèn)的不同住宅樓中隨機(jī)選取1 000戶家庭調(diào)查;
C.從該市公安局戶籍管理處隨機(jī)抽取1 000戶城鄉(xiāng)家庭調(diào)查.
(1)在上述調(diào)查方式中,你認(rèn)為比較合理的一個是【1】.(填“A”、“B”或“C”)
(2)將一種比較合理的調(diào)查方式調(diào)查得到的結(jié)果分為四類:(A)已有兩個孩子;
(B)決定生二胎;(C)考慮之中;(D)決定不生二胎.將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
①補全條形統(tǒng)計圖.
②估計該市100萬戶家庭中決定不生二胎的家庭數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程x2+3x-1=0的兩實數(shù)根為α,β,不解方程求下列各式的值.
(1)α2+β2;(2)α3β+αβ3;(3).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com