日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:△ABC中,AB<BC,AC的中點為M,MN⊥AC交∠ABC的角平分線于N.
          (1)如圖1,若∠ABC=60°,求證:BA+BC=
          3
          BN;
          (2)如圖2,若∠ABC=120°,則BA、BC、BN之間滿足什么關(guān)系式,并對你得出的結(jié)論給予證明.
          分析:(1)連接AN、CN,過點N作NE⊥AB于點E,NF⊥BC于點F,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AN=NC,根據(jù)角平分線上的點到角的兩邊的距離相等可得NE=NF,然后利用“HL”證明Rt△ANE和Rt△CNF全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=CF,然后求出BA+BC=2BF,在Rt△BNF中,利用∠NBF的余弦值列式整理即可得證;
          (2)連接AN、CN,在BC上截取BE=AB,然后利用“邊角邊”證明△ABN和△ABE全等,根據(jù)全等三角形對應(yīng)邊相等可得NA=NE,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得NA=NC,從而得到NE=NC,過點N作NF⊥BC于點F,根據(jù)等腰三角形三線合一的性質(zhì)可得EF=
          1
          2
          EC,然后表示出BF,在Rt△BFN中,利用∠NBF的余弦值列式整理即可得解.
          解答: (1)證明:連接AN、CN,過點N作NE⊥AB于點E,NF⊥BC于點F,
          ∵BN是∠ABC的角平分線,
          ∴NE=NF,
          ∵AC的中點為M,MN⊥AC,
          ∴AN=NC,
          在Rt△ANE和Rt△CNF中,
          BN=BN
          NE=NF
          ,
          ∴Rt△ANE≌Rt△CNF(HL),
          ∴AE=CF,
          ∴BA+BC=BE-AE+BF+CF=2BF,
          ∵∠ABC=60°,BN平分∠ABC,
          ∴∠NBF=
          1
          2
          ×60°=30°,
          ∴cos30°=
          BF
          BN
          =
          1
          2
          (BA+BC)
          BN
          =
          3
          2
          ,
          ∴BA+BC=
          3
          BN;

          (2)連接AN、CN,在BC上截取BE=AB,
          ∵BN是∠ABC的角平分線,
          ∴∠ABN=∠EBN,
          在△ABN和△ABE中,
          BN=BN
          ∠ABN=∠EBN
          BE=AB
          ,
          ∴△ABN≌△ABE(SAS),
          ∴NA=NE,
          ∵AC的中點為M,MN⊥AC,
          ∴NA=NC,
          ∴NE=NC,
          過點N作NF⊥BC于點F,
          則EF=
          1
          2
          EC=
          1
          2
          (BC-BA),
          ∴BF=BE+EF=BA+
          1
          2
          (BC-BA)=
          1
          2
          (BC+BA),
          ∵∠ABC=120°,BN平分∠ABC,
          ∴∠NBF=
          1
          2
          ×120°=60°,
          ∴cos60°=
          BF
          BN
          =
          1
          2
          (BC+BA)
          BN
          =
          1
          2
          ,
          ∴BA+BC=BN.
          點評:本題考查了角平分線的性質(zhì),全等三角形的判定與性質(zhì),線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì)以及銳角三角函數(shù),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
          3
          4
          ,現(xiàn)將△ABC繞著點C逆時針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點P,連接CP.
          精英家教網(wǎng)
          (1)當CD⊥AB時(如圖1),求證:PC平分∠EPA;
          (2)當點P在邊AB上時(如圖2),求證:PE+PB=6;
          (3)在△ABC旋轉(zhuǎn)過程中,連接BE,當△BCE的面積為
          25
          4
          3
          時,求∠BPE的度數(shù)及PB的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個數(shù)有(  )個.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知在△ABC中,有一個角為60°,S△ABC=10
          3
          ,周長為20,則三邊長分別為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在△ABC中,點D、E分別是AB、AC上的點,以AE為直徑的⊙O與過B點的⊙P精英家教網(wǎng)外切于點D,若AC和BC邊的長是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
          (1)求△ABC三邊的長;
          (2)求證:BC是⊙P的切線;
          (3)若⊙O的半徑為3,求⊙P的半徑.

          查看答案和解析>>

          同步練習(xí)冊答案